Observed and simulated changes in the effects of cloud pools on cloud organization with the Madden-Julian Oscillation

Naoko Sakaeda¹, Giuseppe Torri², and Mingyue Tang² ¹School of Meteorology, University of Oklahoma ²Department of Atmospheric Sciences, University of Hawai'i at Mānoa ¹Email: nsakaeda@ou.edu

ARM/ASR Joint User Facility/PI Meeting

We acknowledge the support from grant DE-SC0020188 from ASR Program.

Suggested Effects of Cold Pools on Cloud Organization

- Cold pools are thought to lead to the clustering (organization) of clouds by triggering new clouds nearby existing clouds (e.g., Feng et al. 2015, Rowe et al. 2015).
- However, some studies suggest that gravity waves are more important to cloud organization over warm tropical ocean (e.g., Grant et al. 2018).

Cloud Organization Changes with the Madden-Julian Oscillation

Research Question: What are the observed effects of cold pools on cloud organization? How does it depend on the state of the MJO?

LUCATION OF STORA LAUAI

10

-10

-20

Identification of Observed Cold Pools during DYNAMO/AMIE

AMF-2 Surface Meteorology Data

- Study period: Oct 2011 Jan 2012
- We follow the method of de Szoeke et al. 2017 after removing the diurnal cycle of temperature.
- Temperature drops that exceeds a selected threshold were identified as "cold pools" (sample size > 500).

- Two separate propagation speeds are identified (including the effects of ~5 m/s background winds)
 - 3–8 m/s (slow) propagation: likely cold pools
 - 10–20 m/s (faster) propagation: gravity waves or "gust front" waves (Tulich and Mapes 2008)

• Two separate propagation speeds are identified (including the effects of ~5 m/s background winds)

- 3–8 m/s (slow) propagation: likely cold pools
- 10–20 m/s (faster) propagation: gravity waves or "gust front" waves (Tulich and Mapes 2008)

• Cold pools trigger new rainfall within 20 km.

- Cold pools trigger new rainfall within 20 km.
- At the same time, "parent convection" moves at the speed of gravity waves over broader distances.

Strongest Effects of Cold Pool after MJO Enhanced Phase

- MJO enhanced-to-decaying phase (weakening rainfall & decreasing moisture)
 - Strongest rainfall enhancement associated with cold pools and gravity waves over broader distances.

Strongest Effects of Cold Pool after MJO Enhanced Phase

- Possible effects of stronger background wind speed
 - Faster propagation speeds and enhancement of rain over a longer distance
 - Associated with increased vertical wind shear to support rainfall triggering by cold pools
 - Increased surface moisture flux that changes cold pool properties

Tracking Cold Pool Properties in Simulations

- Examination of possible mechanisms by initializing simulations with different phases of the MJO.
- Model Setup:
 - System for Atmospheric Modeling (SAM) and Lagrangian Particle Dispersion Model to track cold pools

Simulated MJO-Dependent Cold Pool Properties

• Greater moisture at the leading edges of cold pools may support convection development

Impacts of Surface Latent Heat Flux on Cold Pools

 Higher surface latent heat fluxes and stronger advection by background wind seem to lead to higher moisture at the down-wind leading edges of cold pools.

Conclusion

- A new observational approach showed that both cold pools and gravity waves trigger rainfall at different ranges of distances, leading to the clustering of convection over tropical ocean.
- The effectiveness of rainfall triggering by cold pools and gravity waves strongly depend on the state of the MJO due to changes in the large-scale environment and cold pool properties.

Sakaeda and Torri (2023): Observed effects of cold pools on convection triggering and organization during DYNAMO/AMIE (JGR: Atmosphere, in review)

Tang, Torri, and Sakaeda (2023): The simulated organization of deep convection during the MJO (in preparation)

Additional Figures

Triggering of Rainfall Types by Cold Pools

Stratification by Boundary Shear Direction

Large-Scale Environment Changes with the MJO

