

Effective Ice Crystal Densities in Cirrus: A General Criterion for The Morphological Instability that Causes Hollowing and Crystal Complexity

SU5000 10.0kV

ICE-Ball Experiment 2021

Nathan Magee², Gwenore Pokrifka¹, Al Moyle¹, Israel Silber³, Kamal Kant Chandrakar⁴, and Hugh Morrison⁴

¹The Pennsylvania State University ²The College of New Jersey ³Pacific Northwest National Lab ⁴National Center for Atmospheric Research

Jerry Y. Harrington

with

SU5000 15.0kV 14.0mm x700 BSE-ALL 10Pa 11/04/2021 20:45 50.0µm

50 micrometers

August 9, 2023

Schmitt and Heymsfield (2007) ~70% of Rosettes/Columns hollowed

ICE-Ball Experiment

Magee and Harrington (2023)

ICE-Ball Experiment

Even smallest crystals hollowed

Magee and Harrington (2023)

August 9, 2023

ICE-Ball October 23 Cirrus:

- (1) Basal faces frequently hollowed (>80%)
- (2) Prism faces infrequently hollowed

August 9, 2023

- ICE-Ball October 23 Cirrus:
- (1) Basal faces frequently hollowed (>80%)
- (2) Prism faces infrequently hollowed
- (3) Effective Densities ~ 600 kg m⁻³ to solid ice

Morphology Transforms in numerical models

• Size criterion often used for morphological transformation:

 $m(D) = \alpha D^{\beta}$

• But **supersaturation** appears to be the main driver.

Morphology Transforms in numerical models

- Supersaturation Criterion:
 - Some models use an effective density

Morphology Transforms in numerical models

- Supersaturation Criterion:
 - Some models use an effective density

Chen & Lamb (1994)

$$\rho_{dep} = 0.91 \exp[-3 \cdot \max(\Delta \rho - 0.05, 0) / \Gamma(T)]$$

Miller & Young (1979)

$$\rho_s = 0.9 - \alpha (\Delta \rho - 0.05)$$

Morphology Transforms: low temperature threshold

- Low temperature (~ -50C)
- Transformation s_i ~ 20%

 $\Delta \rho_{thr}$ ~ 0.006 g m⁻³

Morphology Transforms: low temperature threshold

- Low temperature (~ -50C)
- Transformation s_i ~ 20%

 $\Delta \rho_{thr}$ ~ 0.006 g m $^{\text{-3}}$

• Similar to Bailey & Hallett (2004)

Morphology Transforms: low temperature threshold

- Low temperature (~ -50C)
- Transformation s_i ~ 20%

 $\Delta \rho_{thr}$ ~ 0.006 g m $^{\text{-3}}$

- Similar to Bailey & Hallett (2004)
- general criterion?

Morphology Transforms: Lab Measurements

- Effective density from measured growth rates
- T = -65 to -40C
- Saturation => low to liquid equilibrium

 σ = vapor excess relative to liquid equilibrium

Pokrifka et al. (2023)

downward trend in $\Delta \rho_{thr}$

Experimental estimates of $\Delta \rho_{\text{thr}}$

Our empirical result:

 $\Rightarrow \sigma \sim 0.27$

 $\Rightarrow \Delta \rho_{thr} \, \mbox{^{\sim}} \, 0.27^{*} \, \Delta \rho_{liq}$

August 9, 2023

August 9, 2023

August 9, 2023

October 21 simulated cirrus: Lab-based criterion & density

Simulations produce cirrus generating heads Similar to observed reflectivity fields and vertical motions

Simulated TKE similar to the radar-derived vertical motions

October 21 simulated cirrus: Lab-based criterion & density

Effective Ice Crystal Density [kg m⁻³]

Lab-based criterion ($\Delta \rho_{thr}$) produces: Densities ~ 500 to 900 kg m⁻³ within the range of the observed crystals

ce Particle Density [kg m⁻³]

Slide 10

- Conclusions -

- Developed a general, lab-based criterion for the relative excess vapor density at which crystals transform from compact to complex forms
- The criterion can be predicted from theoretical growth models using measured critical supersaturations for faceted growth.
- The criterion is relatively broad in range but matches most prior measurements.
- Observations show frequent hollowing even on facets as small as 20 microns and densities like those derived from lab growth measurements
- Use of the laboratory-based criterion and in simulations of an observed cirrus produces effective densities, and cloud structure, similar to observations.