Evaluating Impacts of Aitken Mode Aerosols on Marine Mixed Phase Clouds over the Arctic

Drs. John D'Alessandro, Rob Wood, Peter Blossey

2023

University of Washington, Department of Atmospheric Sciences

Background – Arctic mixed phase clouds

Low-level mixed phase clouds (those containing liquid and ice) are ubiquitous over the Arctic, and can persist for days to weeks in spite of being thermodynamically unstable (e.g., Morrison et al., 2012)

Occurrence frequencies from 2007 to 2010 from CALISPO (Mioche et al., 2015)

- Liquid-topped and often precipitating ice.
- Supercooled liquid tops result in strong cooling rates, driving buoyant production of upward, turbulent motion

Background – Aitken mode CCN

- Tendency of aerosols acting as CCN depends on size (amongst other factors), where larger CCN are more likely to activate at lower ambient supersaturations.
- However, likelihood of activation also depends on availability of CCN. Fewer CCN (e.g., remote marine regions, scavenging, etc.) can allow larger supersaturations to activate Aitken mode CCN (<100 nm) (e.g., Fan et al., 2018).

Background – Aitken mode CCN

- Evidence Aitken mode cloud condensation nuclei (CCN) can increase cloud brightness/lifetimes (*Aitken Buffering*)
- However, most studies have relied on modeling and focused on warm clouds

• **Objective:** Use observations to perform climatological analysis of Aitken mode CCN impacts on mixed phase clouds in the Arctic

Instrumentation and Observation sites

- 1. ARM Cold-Air Outbreaks in the Marine Boundary Layer Experiment (COMBLE) Field Campaign
 - Andøya, Norway (69° latitude)
 - 12/2019-05/2020
 - CCN counter (critSS: 0.1–1%)
 - SMPS
- 2. ARM Ground site: Utqiaģvik (formerly Barrow), Alaska (69° latitude)
 - 03/2007-06/2011
 - 35 GHz Radar
 - Doppler Lidar
 - CCN counter (critSS: 0.1–1.5%)
- Temporal resolution ~1 hr (time for CCN counter to scan all SScrit)

CCN counter "cycles" through different supersaturations (SScrit)

Scanning Mobility Particle Sizer (SMPS) Obtains aerosol concentrations to sizes as low as 10 nm

Task #1: Derive CCN data product reported as function of diameter

• Use results from COMBLE to derive/verify product

Task #2: Use CCN product at location for multiyear analysis (Utqiaģvik, Alaska)

How do we get obtain Aitken mode CCN from ground site?

Convert critical supersaturation (critSS) to dry aerosol diameter (D_d)

$$D_d = \sqrt[3]{\frac{4A^3}{27\kappa ln^2(critSS)}} \qquad A = \frac{4\sigma s_{/a}M_w}{RT\rho_w}$$

Petters and Kreidenweis (2007) provide relationships between dry particle diameter and CCN activity using single hygroscopicity parameter (κ)

Task #1: Derive CCN concentrations asfunction of dry diameter for COMBLE

Fig. 1. Calculated critical supersaturation for $0 \le \kappa \le 1$ computed for $\sigma_{s/a}=0.072 \,\mathrm{J}\,\mathrm{m}^{-2}$ and $T=298.15 \,\mathrm{K}$. The gray lines are linearly spaced intermediates.

Comparing SMPS (N_{aer}) with CCN counter (N_{CCN}) - continued

- Although relatively significant differences occur between CCN and SMPS for smaller particle sizes,
- Differences are robust between small and large particles
- Can compensate with sufficiently large sample size

Can compare and contrast Aitken mode (N_{CCN_Aitken}; ~50-100 nm) and accumulation mode (N_{CCN_Accum}; >~100 nm)

Initial CCN findings – Utqiaģvik, Alaska | 2007-2011

- Aitken mode peaks in Spring & Summer consistent with previous studies (e.g., Freud et al., 2017)

Task #2: Use CCN product for multiyear, mixed phase cloud analysis

Month (Jan-Dec)

Initial CCN findings – Utqiaģvik, Alaska | 2007-2011

- Aitken mode peaks in Spring & Summer consistent with previous studies (e.g., Freud et al., 2017)

Aitken mode is more variable than Accumulation mode

Month (Jan-Dec)

Impacts of Aitken mode CCN on mixed phase cloud depth

: 82 cm 67 33 : 13 cm Ν Ν Aitken Aitken -3 67 : 232 cm Ν 33 : 114 cm Accum Accum Samples sizes: 227-1533

Conditions:

- Synergistic method (radar and lidar) to obtain phase (Shupe, 2007)
- In-cloud samples using Clothiaux et al. (2000) cloud mask
- Mixed phase condition: Mixed phase / All phase range bins > 0.2
- Results only shown for high Aitken months (March-August)

- Deeper clouds associated with high N_{CCN_Aitken}
- Greatest differences at low N_{CCN_Accum}

Conclusions:

- Can derive a CCN product to compare and contrast Aitken and Accumulation mode CCN
 - Derive CCN size distributions using varying critSS from CCN counter
- Significant variability of Aitken mode in spring and summer
- Mixed phase cloud layers are deeper in high Aitken mode environments
 - Most notably in low accumulation mode environments

Future work:

- Continue evaluation of mixed phase cloud Aitken mode CCN interactions
 - Reduce CCN product uncertainty (explore determination of κ ?)
- Compare ground-based and airborne in-situ measurements
 - ACE-ENA, ACME

ARM

JOINT MEETING

2023

References:

- Clothiaux, E. E., Ackerman, T. P., Mace, G. G., Moran, K. P., Marchand, R. T., Miller, M. A., & Martner, B. E. (2000). Objective Determination of Cloud Heights and Radar Reflectivities Using a Combination of Active Remote Sensors at the ARM CART Sites. Journal of Applied Meteorology and Climatology, 39(5), 645–665
- Coopman, Q., Garrett, T. J., Finch, D. P., & Riedi, J. (2018). High Sensitivity of Arctic Liquid Clouds to Long-Range Anthropogenic Aerosol Transport. Geophysical Research Letters, 45(1), 372–381.
- Fan, J., Rosenfeld, D., Zhang, Y., Giangrande, S. E., Li, Z., Machado, L. A. T., et al. (2018). Substantial convection and precipitation enhancements by ultrafine aerosol particles. Science (New York, N.Y.), 359(6374), 411–418.
- Freud, E., Krejci, R., Tunved, P., Leaitch, R., Nguyen, Q. T., Massling, A., et al. (2017). Pan-Arctic aerosol number size distributions: seasonality and transport patterns. Atmospheric Chemistry and Physics, 17(13), 8101–8128.
- Lohmann, U. (2017). Anthropogenic Aerosol Influences on Mixed-Phase Clouds. Current Climate Change Reports, 3(1), 32–44.
- McCoy I. L., Wyant M. C., Blossey N. P., et al. (submitted). Aitken Mode Aerosols Buffer Decoupled Mid-latitude Boundary Layer Clouds Against Precipitation Depletion. Authorea. July 23, 2023.
- Mioche, G., Jourdan, O., Ceccaldi, M., & Delanoë, J. (2015). Variability of mixed-phase clouds in the Arctic with a focus on the Svalbard region: A study based on spaceborne active remote sensing. Atmospheric Chemistry and Physics, 15(5), 2445–2461.
- Morrison, H., de Boer, G., Feingold, G., Harrington, J., Shupe, M. D., & Sulia, K. (2012). Resilience of persistent Arctic mixed-phase clouds. Nature Geoscience, 5(1), 11–17.
- Petters, M. D., & Kreidenweis, S. M. (2007). A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. *Atmospheric Chemistry and Physics*, 7(8), 1961–1971.
- Serreze, M. C., & Barry, R. G. (2011). Processes and impacts of Arctic amplification: A research synthesis. Global and Planetary Change, 77(1–2), 85–96.
- Shupe, M. D. (2007). A ground-based multisensor cloud phase classifier. Geophysical Research Letters, 34(22).
- Wei, J., Wang, Z., Gu, M., Luo, J. J., & Wang, Y. (2021). An evaluation of the Arctic clouds and surface radiative fluxes in CMIP6 models. Acta Oceanologica Sinica, 40(1), 85–102.

Research is supported through ASR award #DE-SC0021103

Extra slides

Aitken and Accumulation mode N_{CCN} primarily have positive covariance at large N_{CCN_Ait} and ~0 covariance at low N_{CCN_Ait}

Non-mixed phase samples (mixed phase ratio = 0) - March to August

Mixed phase samples) - All year

CCN

Time (incremental-Dec. 1st to Apr. 24th)

CCN

Time (incremental-Dec. 1st to Apr. 24th)

Background – Arctic clouds

Arctic amplification is the result of multiple drivers and feedbacks, many of which are related to clouds

Linear trends in temperature from 1960-2009. (Serreze & Barry, 2011)

Climate modeling errors

Significant errors and spread in Coupled Model Intercomparison Project phase 6 (CMIP6) cloud fractions as well as liquid and ice water paths

Background – Mixed phase clouds

Low-level mixed phase clouds Liquid-topped and often precipitating ice

Aerosol-cloud interactions globally

Spread in radiative forcing $\sim 2.5-3$ W m⁻²

Arctic clouds are especially susceptible to indirect effect (2 to 8 times more compared to other regions) due to relatively low cloud droplet concentrations. (Coopman et al. 2018)

Initial findings - Utqiagvik, Alaska 2007-2011

of samples

Background – Arctic mixed phase clouds

90

70

50 40

30

Low-level mixed phase clouds (those containing liquid and ice) (%) 100 are ubiquitous over the Arctic, and 80 60 can persist for days to weeks in spite of being thermodynamically 20 unstable (e.g., Morrison et al., 2012)

Occurrence frequencies from 2007 to 2010 from CALISPO (Mioche et al., 2015)

Aerosol-cloud interactions globally

Spread in radiative forcing $\sim 2.5-3$ W m⁻²

Arctic clouds are especially susceptible to indirect effect (2 to 8 times more compared to other regions) due to relatively low cloud droplet concentrations. (Coopman et al. 2018)

Background – Arctic mixed phase clouds

Climate modeling errors

Significant errors and spread in Coupled Model Intercomparison Project phase 6 (CMIP6) cloud fractions as well as liquid and ice water paths

Wei et al. (2021)

Aerosol-cloud interactions globally

Spread in radiative forcing $\sim 2.5-3$ W m⁻²

Arctic clouds are especially susceptible to indirect effect (2 to 8 times more compared to other regions) due to relatively low cloud droplet concentrations. (Coopman et al. 2018)

 Derived kappa parameter: The Cloud Condensation Nuclei (CCN) Counter and Scanning Mobility Particle Sizer (SMPS) Derived Hygroscopicity Parameter Kappa (CCNSMPSKAPPA) value-added product uses measurements from CCN counter and SMPS instruments. The particle size distribution was integrated from the largest particle size toward smaller particle size until the total number of particles was equal to the CCN number. The particle size at which CCN and size distribution concentrations are equal is called the critical diameter, and for each critical diameter value, a single hygroscopicity parameter kappa using well-established kappa-Köhler theory was calculated (Petters and Kreidenweis 2007). The kappa values are calculated at each different water supersaturation value (0.1 to 1.0%).

