

Seasonal Cloud base Microphysical Dependencies on Boundary Layer Aerosol and Turbulence during ARM LASIC

Jeramy L. Dedrick¹,

Christian N. Pelayo¹, Lynn M. Russell¹, Dan Lubin¹, Connor T. Aghili², and Yan Feng²

¹Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA ²Argonne National Laboratory, Lemont, IL, USA

This work is supported by ASR award **DE-SC0021045**

Thursday, August 10, 2023

ARM/ASR PI Science Team Meeting Plenary Session – Poster Talks

Uncertainty in modeled variance of CCN largely controlled by size-dependent particle properties (mean size, number, composition) Direct measurements in clean regions can help constrain model processes that determine when and which particles act as CCN

DOE ARM Layered Atlantic Smoke Interactions with Clouds (LASIC)

June 2016-October 2017

Ascension Island (8°S, 14.5 °W)

Aerosol size/number, composition, and microphysics

Seasons

<u>Background</u> (Nov.-May): persistent clean conditions

<u>Biomass Burning</u> (Jun.-Oct.): Episodic smoke particle intrusion from Southcentral Africa

(Dedrick et al. 2022)

40% of measurements "clean"

UHSAS-NEPH sea spray retrieval (Dedrick et al., 2022)

Clean and Smoky Aerosol Size Modes

Clean accumulation-mode particles ~50-60% of total number concentration

Accumulation-mode number concentration doubles when smoky; 30 nm larger

Clean Aitken-mode particles ~30% of number sea-spray-mode particles ~10% of number

Smoky Aitken-mode particles smaller, less relative number contribution

Modal Contributions to Clean and Smoky CCN

 $D_{crit}(\kappa,s)$

seasonal differences have small effect on modal D_{crit} between seasons

Clean CCN at <0.3% *s* were 70% accumulation-mode, <20% Aitken, and <10% sea spray

Clean Aitken-mode accounts for 30-40% CCN at >0.3%

Smoky CCN controlled by accumulation-mode (>75%) at <0.3%

Aitken and accumulation-mode CCN contributions largely dependent on number and mean size

Evidence of Cloud Processing Effects on CCN

canonical "gap"/separation feature between Aitken and accumulation modes in marine size distributions

successive cycle of cloud processing (particle activation to droplets in-cloud and evaporation) (Hoppel et al., 1986)

lower size cutoff of particles that activated to form droplets in clouds (i.e. D_{crit})

indicates effective average cloud supersaturation recently experienced by measured aerosol

Aerosol-limited Effects on CCN

Decreasing relationship between D_{HM} and N_{acc} separate CCN activation regimes of aerosol-limitation (<400 cm⁻³) and updraft-limitation (>400 cm⁻³)

Summary

Clean CCN at <0.3% supersaturation were 70% accumulation-mode particles, <10% sea-spray, and 20% Aitken.

Smoky accumulation-mode particles were 30 nm larger, double the concentration and had 15-30% more particles acting as CCN than clean.

Hoppel minimum diameters correlated to accumulation-mode particles showing aerosol-limited mechanisms for clean conditions (<400 cm⁻³).

Results can provide specific constraints for representing increased aerosol perturbations on marine boundary layer clouds and size distribution controls on aerosol-cloud interactions.

Supported by ASR award **DE-SC0021045**

Thank You!

Contact: jdedrick@ucsd.edu

Dedrick et al. (2023): Aerosol-Limited Effects on Cloud Condensation Nuclei in Clean Conditions in the Tropical South Atlantic Boundary Layer during LASIC. Submitted to *Geophys. Res. Lett.*

