
ACT Basics

Contents
Overview

Prerequisites

Intro to ACT

Imports

Downloading and Reading ARM’s NetCDF Data

Quality Controlling Data

Aerosol Instrument Overview

Visualizing Data

Additional Features in ACT

Mimic ARM Data Files

Overview
The ARM TRACER campaign collected a lot of very interesting data in Houston, TX from October 1, 2021 to

September 30, 2022. One event that stands out is a dust event that occurred from July 16 to July 19, 2022.

This notebook will give an introduction to basic features in ACT, using some relevant datastreams from this

event

1. Intro to ACT

2. Downloading and Reading in Data

3. Quality Controlling Data

4. Aerosol Instrument Overview

5. Visualizing Data

6. Additional Features in ACT
Skip to main content

https://raw.githubusercontent.com/ProjectPythiaCookbooks/radar-cookbook/main/thumbnail.png

Prerequisites
This notebook will rely heavily on Python and the Atmospheric data Community Toolkit (ACT). Don’t worry if

you don’t have experience with either, this notebook will walk you though what you need to know.

You will also need an account and token to download data using the ARM Live webservice. Navigate to the

webservice information page and log in to get your token. Your account username will be your ARM

username.

Time to learn: 60 Minutes

System requirements:

Python 3.11 or latest

ACT v1.5.0 or latest

numpy

xarray

matplotlib

Intro to ACT
The Atmospheric data Community Toolkit (ACT) is an open-source Python toolkit for exploring and

analyzing atmospheric time-series datasets. Examples can be found in the ACT Example Gallery. The toolkit

has modules for many different parts of the scientific process, including:

Concepts Importance Notes

ACT Helpful

Skip to main content

https://github.com/ARM-DOE/ACT
https://adc.arm.gov/armlive/
https://github.com/ARM-DOE/ACT
https://arm-doe.github.io/ACT/source/auto_examples/index.html
https://github.com/ARM-DOE/ACT

Data Discovery (act.discovery)

The discovery module houses functions to download or access data from

different groups. Currently it includes function to get data for ARM, NOAA,

EPA, NEON, and more!

Input/Output (act.io)

io contains functions for reading and writing data from various sources and

formats.

Visualization (act.plotting)

plotting contains various routines, built on matplotlib, to help visualize and

explore data. These include

1. Time-series plots

2. Distribution plots like histograms and heatmaps

3. Geographic plots for moving systems like radiosondes or aircraft

4. Skew-T plots for radiosonde data, built off MetPy

5. Wind rose plots for wind and data roses

6. Cross-section plots for working with 3-dimensional data

Corrections (act.corrections)

corrections apply different corrections to data based on need. A majority of

the existing corrections are for lidar data.

Quality Control (act.qc)

The qc module has a lot of functions for working with quality control

information, apply new tests, or filtering data based on existing tests. We will

explore some of that functionality in this notebook.

ARM and NEON data from

Utquivaik, AK

Enhanced Skew-T plot from

ARM’s Southern Great

Plains Site (SGP)

Skip to main content

https://arm-doe.github.io/ACT/API/generated/act.discovery.html
https://arm-doe.github.io/ACT/API/generated/act.io.html
https://arm-doe.github.io/ACT/API/generated/act.plotting.html
https://arm-doe.github.io/ACT/API/generated/act.corrections.html
https://arm-doe.github.io/ACT/API/generated/act.qc.html

Imports
Let’s get started with some data! But first, we need to import some libraries.

Downloading and Reading ARM’s NetCDF Data
ARM’s standard file format is NetCDF (network Common Data Form) which makes it very easy to work with

in Python! ARM data are available through a data portal called Data Discovery or through a webservice. If

you didn’t get your username and token earlier, please go back and see the Prerequisites!

Let’s download some of the MPL data first but let’s just start with one day.

Retrievals (act.retrievals)

There are many cases in which some additional calculations are necessary to

get more value from the instrument data. The retrievals module houses some

functions for performing these advanced calculations.

Utilities (act.utils)

The utils module has a lot of general utilities to help with the data. Some of

these include adding in a solar variable to indicate day/night (useful in filtering

data), unit conversions, decoding WMO weather codes, performing weighted

averaging, etc…

import act
import numpy as np
import xarray as xr
import matplotlib.pyplot as plt

Set your username and token here!
username = 'YourUserName'
token = 'YourToken'

Set the datastream and start/enddates
datastream = 'hou30smplcmask1zwangM1.c1'
startdate = '2022-07-16'
enddate = '2022-07-16'

Use ACT to easily download the data. Watch for the data citation! Show some support
Skip to main content

https://adc.arm.gov/discovery/#/
https://arm-doe.github.io/ACT/API/generated/act.retrievals.html
https://arm-doe.github.io/ACT/API/generated/act.utils.html

Quality Controlling Data
ARM has multiple methods that it uses to communicate data quality information out to the users. One of

these methods is through “embedded QC” variables. These are variables within the file that have

information on automated tests that have been applied. Many times, they include Min, Max, and Delta tests

but as is the case with the AOS instruments, there can be more complicated tests that are applied.

The results from all these different tests are stored in a single variable using bit-packed QC. We won’t get

into the full details here, but it’s a way to communicate the results of multiple tests in a single integer value

by utilizing binary and bits! You can learn more about bit-packed QC here but ACT also has many of the

tools for working with ARM QC.

Other Sources of Quality Control

ARM also communicates problems with the data quality through Data Quality Reports (DQR). These reports

are normally submitted by the instrument mentor when there’s been a problem with the instrument. The

categories include:

Data Quality Report Categories

Missing: Data are not available or set to -9999

Suspect: The data are not fully incorrect but there are problems that increases the uncertainty of

the values. Data should be used with caution.

Bad: The data are incorrect and should not be used.

Note: Data notes are a way to communicate information that would be useful to the end user but

does not rise to the level of suspect or bad data

Examples of ACT QC functionality

Additionally, data quality information can be found in the Instrument Handbooks, which are included on

most instrument pages. Here is an example of the MPL handbook.

for ARM's instrument experts and cite their data if you use it in a publication
result = act.discovery.download_data(username, token, datastream, startdate, enddate)

Let's read in the data using ACT and check out the data
ds_mpl = act.io.armfiles.read_netcdf(result)

ds_mpl

ds_mpl['cloud_base'].plot()

Skip to main content

https://code.arm.gov/docs/QC-flag-examples/-/wikis/home
https://arm-doe.github.io/ACT/source/auto_examples/qc/plot_qc_bsrn.html#sphx-glr-source-auto-examples-qc-plot-qc-bsrn-py
https://www.arm.gov/publications/tech_reports/handbooks/mpl_handbook.pdf

Filtering data

It’s easy to filter out data failing tests with ACT. This will show you how to filter data by test or by

assessment.

Let's take a look at the quality control information associated with a variable from the
variable = 'linear_depol_ratio'

First, for many of the ACT QC features, we need to get the dataset more to CF standard a
involves cleaning up some of the attributes and ways that ARM has historically handled Q
ds_mpl.clean.cleanup()

Next, let's take a look at visualizing the quality control information
Create a plotting display object with 2 plots
display = act.plotting.TimeSeriesDisplay(ds_mpl, figsize=(15, 10), subplot_shape=(2,))

Plot up the variable in the first plot
display.plot(variable, subplot_index=(0,), cb_friendly=True)

Plot up a day/night background
display.day_night_background(subplot_index=(0,))

Plot up the QC variable in the second plot
display.qc_flag_block_plot(variable, subplot_index=(1,))
plt.show()

Let's filter out test 5 using ACT. Yes, it's that simple!
ds_mpl.qcfilter.datafilter(variable, rm_tests=[1, 2], del_qc_var=False)

There are other ways we can filter data out as well. Using the
rm_assessments will filter out by all Bad/Suspect tests that are failing
ds.qcfilter.datafilter(variable, rm_assessments=['Bad', 'Suspect'], del_qc_var=False)

Let's check out the attributes of the variable
Whenever data are filtered out using the datafilter function
a comment will be added to the variable history for provenance purposes
print(ds_mpl[variable].attrs)

And plot it all again!
Create a plotting display object with 2 plots
display = act.plotting.TimeSeriesDisplay(ds_mpl, figsize=(15, 10), subplot_shape=(2,))

Plot up the variable in the first plot
display.plot(variable, subplot_index=(0,), cb_friendly=True)

Plot up a day/night background
display.day_night_background(subplot_index=(0,))

Plot up the QC variable in the second plot
display.qc_flag_block_plot(variable, subplot_index=(1,))
plt.show()

Skip to main content

ARM Data Quality Reports (DQR)!

ARM’s DQRs can be easily pulled in and added to the QC variables using ACT. We can do that with the

below one line command. However, for this case, there won’t be any DQRs on the data but let’s visualize it

just in case! Check out the ACT QC Examples for more use cases!

Aerosol Instrument Overview

Query the ARM DQR Webservice
ds_mpl = act.qc.add_dqr_to_qc(ds_mpl, variable=variable)

ds_mpl['qc_' + variable]

Skip to main content

https://arm-doe.github.io/ACT/source/auto_examples/index.html#quality-control-examples

Single Particle
Soot
Photometer
(SP2)

The single-particle soot

photometer (SP2)

measures the soot

(black carbon) mass of

individual aerosol

particles by laser-

induced incandescence

down to concentrations

as low as ng/m^3. Learn

more

Aerodynamic
Particle Sizer
(APS)

The aerodynamic

particle sizer (APS) is a

particle size

spectrometer that

measures both the

particle aerodynamic

diameter based on

particle time of flight

and optical diameter

based on scattered light

intensity. The APS

provides the number

size distribution for

particles with

aerodynamic diameters

from 0.5 to 20

micrometers and with

optical diameters from

ARM Aerosol Instrumentation Particle Size Ranges

Skip to main content

https://arm.gov/capabilities/instruments/sp2
https://arm-development.github.io/ARM-Notebooks/_images/aerosol_sizing1.png

Downloading and QCing the Aerosol Data

Let’s start pulling these data together into the same plots so we can see what’s going on.

0.3 to 20 micrometers.

Learn more

Aerosol
Chemical
Speciation
Monitor
(ACSM)

The aerosol chemical

speciation monitor is a

thermal vaporization,

electron impact,

ionization mass

spectrometer that

measures bulk chemical

composition of the

rapidly evaporating

component of sub-

micron aerosol particles

in real time. Standard

measurements include

mass concentrations of

organics, sulfate,

nitrate, ammonium, and

chloride. Learn more

Let's set a longer time period
startdate = '2022-07-10'
enddate = '2022-07-20'

APS
datastream = 'houaosapsM1.b1'
result = act.discovery.download_data(username, token, datastream, startdate, enddate)
ds_aps = act.io.armfiles.read_netcdf(result)

#ACSM
datastream = 'houaosacsmM1.b2'
result = act.discovery.download_data(username, token, datastream, startdate, enddate)Skip to main content

https://arm.gov/capabilities/instruments/aps
https://arm.gov/capabilities/instruments/acsm

Visualizing Data
We have all the datasets downloaded, let’s start to visualize them in different ways using ACT. If you ever

need a place to start with how to visualize data using ACT, check out the ACT Plotting Examples

ds_acsm = act.io.armfiles.read_netcdf(result)

#SP2
datastream = 'houaossp2bc60sM1.b1'
result = act.discovery.download_data(username, token, datastream, startdate, enddate)
ds_sp2 = act.io.armfiles.read_netcdf(result)

AOSMET - Just to get the wind data!
datastream = 'houmetM1.b1'
result = act.discovery.download_data(username, token, datastream, startdate, enddate)
ds_met = act.io.armfiles.read_netcdf(result)

MPL to get the full record
datastream = 'hou30smplcmask1zwangM1.c1'
result = act.discovery.download_data(username, token, datastream, startdate, enddate)
ds_mpl = act.io.armfiles.read_netcdf(result)

Before we proceed to plotting, let's reduce the MPL data down a little bit
This will remove all data where heights are greater than 5
ds_mpl = ds_mpl.where(ds_mpl.height <= 3, drop=True)

This will resample to 1 minute
ds_mpl = ds_mpl.resample(time='1min').nearest()

Let's not forget about QCing the data!
We can remove all the bad data from each aerosol dataset
ds_aps.clean.cleanup()
ds_aps = act.qc.arm.add_dqr_to_qc(ds_aps)
ds_aps.qcfilter.datafilter(rm_assessments=['Bad'], del_qc_var=False)

ds_acsm.clean.cleanup()
ds_acsm = act.qc.arm.add_dqr_to_qc(ds_acsm)
ds_acsm.qcfilter.datafilter(rm_assessments=['Bad'], del_qc_var=False)

ds_sp2.clean.cleanup()
ds_sp2 = act.qc.arm.add_dqr_to_qc(ds_sp2)
ds_sp2.qcfilter.datafilter(rm_assessments=['Bad'], del_qc_var=False)

ds_mpl.clean.cleanup()
ds_mpl = act.qc.arm.add_dqr_to_qc(ds_mpl)
ds_mpl.qcfilter.datafilter(rm_assessments=['Bad'], del_qc_var=False)

We can pass a dictionary to the display objects with multiple datasets
So let's plot all this up!
display = act.plotting.TimeSeriesDisplay({'aps': ds_aps, 'mpl': ds_mpl, 'acsm': ds_acsm, '
 subplot_shape=(4,), figsize=(10,18))

MPL Plot Skip to main content

https://arm-doe.github.io/ACT/source/auto_examples/index.html#plotting-examples

Data Rose Plots
These plots display the data on a windrose-like plot to visualize directional dependencies in the data.

Variable names of interest linear_depol_ratio, linear_depol_snr, backscatter_snr
display.plot('linear_depol_ratio', dsname='mpl', subplot_index=(0,), cb_friendly=True)
display.set_yrng([0, 3], subplot_index=(0,))

APS Plot
display.plot('total_N_conc', dsname='aps', subplot_index=(1,))
display.day_night_background(dsname='aps', subplot_index=(1,))

ACSM plot
display.plot('sulfate', dsname='acsm', subplot_index=(2,), label='sulfate')
display.plot('nitrate', dsname='acsm', subplot_index=(2,), label='nitrate')
display.plot('ammonium', dsname='acsm', subplot_index=(2,), label='ammonium')
display.plot('chloride', dsname='acsm', subplot_index=(2,), label='chloride')
display.plot('total_organics', dsname='acsm', subplot_index=(2,), label='total_organics')

display.day_night_background(dsname='acsm', subplot_index=(2,))

SP2 Plot
display.plot('sp2_rbc_conc', dsname='sp2', subplot_index=(3,))
display.day_night_background(dsname='sp2', subplot_index=(3,))

plt.subplots_adjust(hspace=0.3)
plt.legend()
plt.savefig('./images/output.png')
plt.show()

We already should have the data loaded up so let's explore with some data roses
First we need to combine data and to do that, we need to get it on the same time grid
ds_combined = xr.merge([ds_met.resample(time='30min').nearest(), ds_acsm.resample(time='30

Plot out the data rose using the WindRose display object
display = act.plotting.WindRoseDisplay(ds_combined)
display.plot_data('wdir_vec_mean', 'wspd_vec_mean', 'sulfate', num_dirs=15, plot_type='lin
plt.show()

First we need to combine data and to do that, we need to get it on the same time grid
ds_combined = xr.merge([ds_met.resample(time='1min').nearest(), ds_sp2.resample(time='1min

Plot out the data rose using the WindRose display object
display = act.plotting.WindRoseDisplay(ds_combined)

Let's try a different type of data rose that will show the mean Black Carbon Concentrati
depending on wind direction and speed
display.plot_data('wdir_vec_mean', 'wspd_vec_mean', 'sp2_rbc_conc', num_dirs=15, plot_type
plt.show()

Skip to main content

Checkout the area

The AMF was deployed at La Porte Municipal Airport. Check out the google map and see if this mapes

sense!

Back to the visualizations!

Let’s get back to checking out the other visualization features in ACT!

Histograms

Scatter Plots and Heatmaps

Let’s plot up a comparison of the APS total concentration and the ACSM sulfates. Feel free to change the

variables from the ACSM to experiment!

We do the same thing as before but call the DistributionDisplay class
display = act.plotting.DistributionDisplay(ds_aps)

And then we can plot the data! Note that we are passing a range into the
histogram function to set the min/max range of the data
display.plot_stacked_bar_graph('total_N_conc', bins=20, hist_kwargs={'range': [0, 60]})
plt.show()

We can create these plots in groups as well but we need to know
how many there will be ahead of time for the shape
display = act.plotting.DistributionDisplay(ds_aps, figsize=(15, 15), subplot_shape=(6, 4))
groupby = display.group_by('hour')

And then we can plot the data in groups! The main issue is that it doesn't automaticall
Annotate the group on the plot. We're also setting the titile to blank to save space
groupby.plot_group('plot_stacked_bar_graph', None, field='total_N_conc', set_title='', bin

We want these graphs to have the same axes, so we can easily run through
each plot and modify the axes. Right now, we can just hard code these in
for i in range(len(display.axes)):
 for j in range(len(display.axes[i])):
 display.axes[i, j].set_xlim([0, 60])
 display.axes[i, j].set_ylim([0, 15000])

plt.subplots_adjust(wspace=0.35)

plt.show()

Let's merge the aps and ACSM data together and plot out some distribution plots
First we need to combine data and to do that, we need to get it on the same time gridSkip to main content

https://www.google.com/maps/place/Airport+Blvd/@29.6652378,-95.0466689,9165m/data=!3m1!1e3!4m7!3m6!1s0x863f6020e5e0ea21:0x792ee34f8eaac3e8!4b1!8m2!3d29.6663473!4d-95.0578571!16s%2Fg%2F1wbf_smp?entry=ttu

Additional Features in ACT
If there’s time to explore more features or if you want to on your own time, these are some of the many

additional features that you might find useful in ACT

Skew-T Plots

ds_combined = xr.merge([ds_aps.resample(time='30min').nearest(), ds_acsm.resample(time='30

Plot out the data rose using the Distribution display object
display = act.plotting.DistributionDisplay(ds_combined)
display.plot_scatter('total_N_conc', 'sulfate', m_field='time')

plt.show()

Let's try a heatmap with this as well!
display = act.plotting.DistributionDisplay(ds_combined, figsize=(12, 5), subplot_shape=(1,

display.plot_scatter('total_N_conc', 'sulfate', m_field='time', subplot_index=(0, 0))
display.plot_heatmap('total_N_conc', 'sulfate', subplot_index=(0, 1), x_bins=50, y_bins=50

plt.show()

Let's try one last plot type with this dataset
Violin plots!
display = act.plotting.DistributionDisplay(ds_acsm)

And then we can plot the data!
display.plot_violin('sulfate', positions=[1.0])
display.plot_violin('nitrate', positions=[2.0])
display.plot_violin('ammonium', positions=[3.0])
display.plot_violin('chloride', positions=[4.0])
display.plot_violin('total_organics', positions=[5.0])

Let's add some more information to the plots
Update the tick information
display.axes[0].set_xticks([0.5, 1, 2, 3, 4, 5, 5.5])
display.axes[0].set_xticklabels(['',
 'Sulfate',
 'Nitrate',
 'Ammonium',
 'Chloride',
 'Total Organics',
 '']
)

plt.show()

Let's set a longer time period
startdate = '2022-07-16'
enddate = '2022-07-16' Skip to main content

Wind Roses

Present Weather Codes

See this example of how to plot up these present weather codes on your plots!

Accumulating Precipitation

This example shows how to accumulate precipitation using the ACT utility and then overplot the PWD

present weather codes

SONDE
datastream = 'housondewnpnM1.b1'
result = act.discovery.download_data(username, token, datastream, startdate, enddate)
result.sort()
ds_sonde = act.io.armfiles.read_netcdf(result[-1])

Plot enhanced Skew-T plot
display = act.plotting.SkewTDisplay(ds_sonde)
display.plot_enhanced_skewt(color_field='alt')

plt.show()

Now we can plot up a wind rose of that entire month's worth of data
windrose = act.plotting.WindRoseDisplay(ds_met, figsize=(10,8))
windrose.plot('wdir_vec_mean', 'wspd_vec_mean', spd_bins=np.linspace(0, 10, 5))
windrose.axes[0].legend()
plt.show()

Pass it to the function to decode it along with the variable name
ds_met = act.utils.inst_utils.decode_present_weather(ds_met, variable='pwd_pw_code_inst')

We're going to print out the first 10 decoded values that weren't 0
This shows the utility of also being able to use the built-in xarray
features like where!
print(list(ds_met['pwd_pw_code_inst_decoded'].where(ds_met.pwd_pw_code_inst.compute() > 0,

Let's accumulate the precipitation data from the three different sensors in the MET Syst
These instruments include a tipping bucket rain gauge, optical rain gauge, and a present
variables = ['tbrg_precip_total', 'org_precip_rate_mean', 'pwd_precip_rate_mean_1min']
for v in variables:
 ds_met = act.utils.data_utils.accumulate_precip(ds_met, v)

We can plot them out easily in a loop. Note, they have _accumulated on the end of the nSkip to main content

https://arm-doe.github.io/ACT/source/auto_examples/plotting/plot_presentweathercode.html#sphx-glr-source-auto-examples-plotting-plot-presentweathercode-py

Doppler Lidar Wind Retrievals

This will show you how you can process the doppler lidar PPI scans to produce wind profiles based on

Newsom et al 2016.

display = act.plotting.TimeSeriesDisplay(ds_met, figsize=(8, 6))
for v in variables:
 display.plot(v + '_accumulated', label=v)

Add a day/night background
display.day_night_background()

Now we can decode the present weather codes (WMO codes)
ds_met = act.utils.inst_utils.decode_present_weather(ds_met, variable='pwd_pw_code_1hr')

We're only going to plot up the code when it changes
and if we plot it up, we will skip 2 hours so the plot
is not busy and unreadable
ct = 0
ds = ds_met.where(ds_met.pwd_pw_code_1hr.compute() > 0, drop=True)
wx = ds['pwd_pw_code_1hr_decoded'].values
prev_wx = None
while ct < len(wx):
 if wx[ct] != prev_wx:
 # We can access the figure and axes through the display object
 display.axes[0].text(ds['time'].values[ct], -7.5, wx[ct], rotation=90, va='top')
 prev_wx = wx[ct]
 ct += 120
plt.subplots_adjust(bottom=0.20)
plt.legend()
plt.show()

We're going to use some test data that already exists within ACT
Let's set a longer time period
startdate = '2022-07-16T21:00:00'
enddate = '2022-07-16T22:00:00'

SONDE
datastream = 'houdlppiM1.b1'
result = act.discovery.download_data(username, token, datastream, startdate, enddate)
result.sort()

ds = act.io.armfiles.read_netcdf(result)
ds
Returns the wind retrieval information in a new object by default
Note that the default snr_threshold of 0.008 was too high for the first profile
Reducing it to 0.002 makes it show up but the quality of the data is likely suspect.
ds_wind = act.retrievals.compute_winds_from_ppi(ds, snr_threshold=0.0001)

Plot it up
display = act.plotting.TimeSeriesDisplay(ds_wind)
display.plot_barbs_from_spd_dir('wind_speed', 'wind_direction', invert_y_axis=False)

#Update the x-limits to make sure both wind profiles are shown
display.axes[0].set_xlim([np.datetime64('2022-07-16T20:45:00'), np.datetime64('2022-07-16TSkip to main content

https://arm-doe.github.io/ACT/API/generated/act.retrievals.compute_winds_from_ppi.html#act.retrievals.compute_winds_from_ppi

Mimic ARM Data Files
ARM’s NetCDF files are based around what we call a data object definition or DOD. These DOD’s essentially

create the structure of the file and are what you see in the NetCDF file as the header. We can use this

information to create an xarray object, filled with missing value, that one can populated with data and then

write it out to a NetCDF file that looks exactly like an ARM file.

The user is able to set up the size of the datasets ahead of time by passing in the dimension sizes as shown

below with {'time': 1440}

This could greatly streamline and improve the usability of PI-submitted datasets.

Note, that this does take some time for datastreams like the MET that have a lot of versions.

plt.show()

ds = act.io.armfiles.create_ds_from_arm_dod('ld.b1', {'time': 1440}, scalar_fill_dim='time

Create some random data and set it to the variable in the obect like normal
ds['precip_rate'].values = np.random.rand(1440)
ds

ds['precip_rate'].plot()

Py-ART Basics

Contents
Overview

Prerequisites

Imports

An Overview of Py-ART

Reading in Data Using Py-ART

Plotting our Radar Data

Plotting an RHI

Summary

Resources and References

Overview
Within this notebook, we will cover:

1. General overview of Py-ART and its functionality

2. Reading data using Py-ART

3. An overview of the pyart.Radar object

4. Create a Plot of our Radar Data

Skip to main content

https://raw.githubusercontent.com/ProjectPythiaCookbooks/radar-cookbook/main/thumbnail.png

Prerequisites

Time to learn: 30 minutes

Imports

Concepts Importance Notes

Intro to Cartopy Helpful Basic features

Matplotlib Basics Helpful Basic plotting

NumPy Basics Helpful Basic arrays

import os
import warnings

import cartopy.crs as ccrs
import matplotlib.pyplot as plt
import numpy as np

import pyart

warnings.filterwarnings('ignore')

You are using the Python ARM Radar Toolkit (Py-ART), an open source
library for working with weather radar data. Py-ART is partly
supported by the U.S. Department of Energy as part of the Atmospheric
Radiation Measurement (ARM) Climate Research Facility, an Office of
Science user facility.
##
If you use this software to prepare a publication, please cite:
##
JJ Helmus and SM Collis, JORS 2016, doi: 10.5334/jors.119

/Users/mgrover/miniforge3/envs/pyart-docs/lib/python3.10/site-packages/tqdm/auto.py:22: Tqd
 from .autonotebook import tqdm as notebook_tqdm

Skip to main content

https://foundations.projectpythia.org/core/cartopy/cartopy.html
https://foundations.projectpythia.org/core/matplotlib/matplotlib-basics.html
https://foundations.projectpythia.org/core/numpy/numpy-basics.html

An Overview of Py-ART

History of the Py-ART

Development began to address the needs of ARM with the acquisition of a number of new scanning

cloud and precipitation radar as part of the American Recovery Act.

The project has since expanded to work with a variety of weather radars and a wider user base

including radar researchers and climate modelers.

The software has been released on GitHub as open source software under a BSD license. Runs on

Linux, OS X. It also runs on Windows with more limited functionality.

What can PyART Do?

Py-ART can be used for a variety of tasks from basic plotting to more complex processing pipelines.

Specific uses for Py-ART include:

Reading radar data in a variety of file formats.

Creating plots and visualization of radar data.

Correcting radar moments while in antenna coordinates, such as:

Doppler unfolding/de-aliasing.

Attenuation correction.

Phase processing using a Linear Programming method.

Mapping data from one or multiple radars onto a Cartesian grid.

Performing retrievals.

Writing radial and Cartesian data to NetCDF files.

Skip to main content

Reading in Data Using Py-ART

The Sample Data - SAIL!

Our Radar 📡

Reading data in using pyart.io.read
When reading in a radar file, we use the pyart.io.read module.Skip to main content

pyart.io.read can read a variety of different radar formats, such as Cf/Radial, LASSEN, and more. The

documentation on what formats can be read by Py-ART can be found here:

Py-ART IO Documentation

For most file formats listed on the page, using pyart.io.read should suffice since Py-ART has the ability

to automatically detect the file format.

Let’s check out what arguments arguments pyart.io.read() takes in!

pyart.io.read?

Signature: pyart.io.read(filename, use_rsl=False, **kwargs)
Docstring:
Read a radar file and return a radar object.

Additional parameters are passed to the underlying read_* function.

Parameters

filename : str
 Name of radar file to read.
use_rsl : bool
 True will use the TRMM RSL library to read files which are supported
 both natively and by RSL. False will choose the native read function.
 RSL will always be used to read a file if it is not supported
 natively.

Other Parameters

field_names : dict, optional
 Dictionary mapping file data type names to radar field names. If a
 data type found in the file does not appear in this dictionary or has
 a value of None it will not be placed in the radar.fields dictionary.
 A value of None, the default, will use the mapping defined in the
 metadata configuration file.
additional_metadata : dict of dicts, optional
 Dictionary of dictionaries to retrieve metadata from during this read.
 This metadata is not used during any successive file reads unless
 explicitly included. A value of None, the default, will not
 introduct any addition metadata and the file specific or default
 metadata as specified by the metadata configuration file will be used.
file_field_names : bool, optional
 True to use the file data type names for the field names. If this
 case the field_names parameter is ignored. The field dictionary will
 likely only have a 'data' key, unless the fields are defined in
 `additional_metadata`.
exclude_fields : list or None, optional
 List of fields to exclude from the radar object. This is applied
 after the `file_field_names` and `field_names` parameters.
delay_field_loading : bool
 True to delay loading of field data from the file until the 'data'
 key in a particular field dictionary is accessed. In this case
 the field attribute of the returned Radar object will contain
 LazyLoadDict objects not dict objects. Not all file types support this
 parameter.

Skip to main content

https://arm-doe.github.io/pyart/API/generated/pyart.io.html

Let’s use a sample data file from pyart - which is cfradial format.

When we read this in, we get a pyart.Radar object!

Investigate the pyart.Radar object

Within this pyart.Radar object object are the actual data fields.

This is where data such as reflectivity and velocity are stored.

To see what fields are present we can add the fields and keys additions to the variable where the radar

object is stored.

Extract a sample data field

The fields are stored in a dictionary, each containing coordinates, units and more. All can be accessed by

just adding the fields addition to the radar object variable.

For an individual field, we add a string in brackets after the fields addition to see the contents of that field.

Let’s take a look at 'corrected_reflectivity' , which is a common field to investigate.

Returns

radar : Radar
 Radar object. A TypeError is raised if the format cannot be
 determined.
File: ~/git_repos/pyart/pyart/io/auto_read.py
Type: function

file = '../data/sample_sail_ppi.nc'
radar = pyart.io.read(file)
radar

<pyart.core.radar.Radar at 0x283fa3160>

radar.fields.keys()

dict_keys(['corrected_velocity', 'corrected_reflectivity', 'corrected_differential_reflect

print(radar.fields['corrected_reflectivity'])

Skip to main content

https://github.com/NCAR/CfRadial
https://arm-doe.github.io/pyart/API/generated/pyart.core.Radar.html#pyart.core.Radar
https://arm-doe.github.io/pyart/API/generated/pyart.core.Radar.html#pyart.core.Radar
https://arm-doe.github.io/pyart/API/generated/pyart.core.Radar.html#pyart.core.Radar

We can go even further in the dictionary and access the actual reflectivity data.

We use add 'data' at the end, which will extract the data array (which is a masked numpy array) from

the dictionary.

Lets’ check the size of this array…

This reflectivity data array, numpy array, is a two-dimensional array with dimensions:

Gates (number of samples away from the radar)

Rays (direction around the radar)

{'_FillValue': 1e+20, 'long_name': 'Corrected reflectivity', 'units': 'dBZ', 'standard_name
 data=[[--, --, --, ..., --, --, --],
 [--, --, --, ..., --, --, --],
 [--, --, --, ..., --, --, --],
 ...,
 [12.25, 9.84000015258789, 14.210000038146973, ..., --, --, --],
 [11.5, 9.729999542236328, 11.75999927520752, ..., --, --, --],
 [11.069999694824219, 10.329999923706055, 10.050000190734863, ...,
 --, --, --]],
 mask=[[True, True, True, ..., True, True, True],
 [True, True, True, ..., True, True, True],
 [True, True, True, ..., True, True, True],
 ...,
 [False, False, False, ..., True, True, True],
 [False, False, False, ..., True, True, True],
 [False, False, False, ..., True, True, True]],
 fill_value=1e+20)}

reflectivity = radar.fields['corrected_reflectivity']['data']
print(type(reflectivity), reflectivity)

<class 'numpy.ma.core.MaskedArray'> [[-- -- -- ... -- -- --]
 [-- -- -- ... -- -- --]
 [-- -- -- ... -- -- --]
 ...
 [12.25 9.84000015258789 14.210000038146973 ... -- -- --]
 [11.5 9.729999542236328 11.75999927520752 ... -- -- --]
 [11.069999694824219 10.329999923706055 10.050000190734863 ... -- -- --]]

reflectivity.shape

(9013, 668)

print(radar.nrays, radar.ngates)

Skip to main content

If we wanted to look the 300th ray, at the second gate, we would use something like the following:

Plotting our Radar Data

An Overview of Py-ART Plotting Utilities

Now that we have loaded the data and inspected it, the next logical thing to do is to visualize the data! Py-

ART’s visualization functionality is done through the objects in the pyart.graph module.

In Py-ART there are 4 primary visualization classes in pyart.graph:

RadarDisplay

RadarMapDisplay

AirborneRadarDisplay

Plotting grid data

GridMapDisplay

Use the RadarMapDisplay with our data

For the this example, we will be using RadarMapDisplay , using Cartopy to deal with geographic

coordinates.

We start by creating a figure first.

Once we have a figure, let’s add our RadarMapDisplay

9013 668

print(reflectivity[300, 2])

9.369999885559082

fig = plt.figure(figsize=[10, 10])

<Figure size 1000x1000 with 0 Axes>

Skip to main content

https://arm-doe.github.io/pyart/API/generated/pyart.graph.html
https://arm-doe.github.io/pyart/API/generated/pyart.graph.RadarDisplay.html
https://arm-doe.github.io/pyart/API/generated/pyart.graph.RadarMapDisplay.html
https://arm-doe.github.io/pyart/API/generated/pyart.graph.AirborneRadarDisplay.html
https://arm-doe.github.io/pyart/API/generated/pyart.graph.GridMapDisplay.html
https://arm-doe.github.io/pyart/API/generated/pyart.graph.RadarMapDisplay.html

Adding our map display without specifying a field to plot won’t do anything we need to specifically add a

field to field using .plot_ppi_map() , which creates a Plan Position Indicator (PPI) plot.

By default, it will plot the elevation scan, the the default colormap from Matplotlib … let’s customize!

We add the following arguements:

sweep=3 - The fourth elevation scan (since we are using Python indexing)

vmin=-20 - Minimum value for our plotted field/colorbar

vmax=60 - Maximum value for our plotted field/colorbar

projection=ccrs.PlateCarree() - Cartopy latitude/longitude coordinate system

cmap='pyart_HomeyerRainbow' - Colormap to use, selecting one provided by PyART of

lat_lines - Which lines to plot for latitude

lon_lines - Which liens to plot for longitude

fig = plt.figure(figsize=[10, 10])
display = pyart.graph.RadarMapDisplay(radar)

<Figure size 1000x1000 with 0 Axes>

display.plot_ppi_map('corrected_reflectivity')

Skip to main content

You can change many parameters in the graph by changing the arguments to plot_ppi_map. As you can

recall from earlier. simply view these arguments in a Jupyter notebook by typing:

fig = plt.figure(figsize=[12, 8])
display = pyart.graph.RadarMapDisplay(radar)
display.plot_ppi_map('corrected_reflectivity',
 sweep=3,
 vmin=-20,
 vmax=60,
 lat_lines = np.arange(38, 39.5, .25),
 lon_lines = np.arange(-107.5, -106.5, .25),
 projection=ccrs.PlateCarree(),
 cmap='pyart_HomeyerRainbow')
plt.savefig("sample-ppi-map.png", dpi=300)

display.plot_ppi_map?

Signature:
display.plot_ppi_map(
 field,
 sweep=0,
 mask_tuple=None,
 vmin=None,
 vmax=None,
 cmap=None,
 norm=None,
 mask_outside=False,
 title=None,
 title_flag=True,
 colorbar_flag=True,
 colorbar_label=None,
 ax=None,
 fig=None, Skip to main content

 lat_lines=None,
 lon_lines=None,
 projection=None,
 min_lon=None,
 max_lon=None,
 min_lat=None,
 max_lat=None,
 width=None,
 height=None,
 lon_0=None,
 lat_0=None,
 resolution='110m',
 shapefile=None,
 shapefile_kwargs=None,
 edges=True,
 gatefilter=None,
 filter_transitions=True,
 embellish=True,
 raster=False,
 ticks=None,
 ticklabs=None,
 alpha=None,
 edgecolors='face',
 **kwargs,
)
Docstring:
Plot a PPI volume sweep onto a geographic map.

Parameters

field : str
 Field to plot.
sweep : int, optional
 Sweep number to plot.

Other Parameters

mask_tuple : (str, float)
 Tuple containing the field name and value below which to mask
 field prior to plotting, for example to mask all data where
 NCP < 0.5 set mask_tuple to ['NCP', 0.5]. None performs no masking.
vmin : float
 Luminance minimum value, None for default value.
 Parameter is ignored is norm is not None.
vmax : float
 Luminance maximum value, None for default value.
 Parameter is ignored is norm is not None.
norm : Normalize or None, optional
 matplotlib Normalize instance used to scale luminance data. If not
 None the vmax and vmin parameters are ignored. If None, vmin and
 vmax are used for luminance scaling.
cmap : str or None
 Matplotlib colormap name. None will use the default colormap for
 the field being plotted as specified by the Py-ART configuration.
mask_outside : bool
 True to mask data outside of vmin, vmax. False performs no
 masking.
title : str
 Title to label plot with, None to use default title generated from
 the field and tilt parameters. Parameter is ignored if title_flag
 is False.
title_flag : bool
 True to add a title to the plot, False does not add a title.Skip to main content

colorbar_flag : bool
 True to add a colorbar with label to the axis. False leaves off
 the colorbar.
ticks : array
 Colorbar custom tick label locations.
ticklabs : array
 Colorbar custom tick labels.
colorbar_label : str
 Colorbar label, None will use a default label generated from the
 field information.
ax : Cartopy GeoAxes instance
 If None, create GeoAxes instance using other keyword info.
 If provided, ax must have a Cartopy crs projection and projection
 kwarg below is ignored.
fig : Figure
 Figure to add the colorbar to. None will use the current figure.
lat_lines, lon_lines : array or None
 Locations at which to draw latitude and longitude lines.
 None will use default values which are resonable for maps of
 North America.
projection : cartopy.crs class
 Map projection supported by cartopy. Used for all subsequent calls
 to the GeoAxes object generated. Defaults to LambertConformal
 centered on radar.
min_lat, max_lat, min_lon, max_lon : float
 Latitude and longitude ranges for the map projection region in
 degrees.
width, height : float
 Width and height of map domain in meters.
 Only this set of parameters or the previous set of parameters
 (min_lat, max_lat, min_lon, max_lon) should be specified.
 If neither set is specified then the map domain will be determined
 from the extend of the radar gate locations.
shapefile : str
 Filename for a shapefile to add to map.
shapefile_kwargs : dict
 Key word arguments used to format shapefile. Projection defaults
 to lat lon (cartopy.crs.PlateCarree())
resolution : '10m', '50m', '110m'.
 Resolution of NaturalEarthFeatures to use. See Cartopy
 documentation for details.
gatefilter : GateFilter
 GateFilter instance. None will result in no gatefilter mask being
 applied to data.
filter_transitions : bool
 True to remove rays where the antenna was in transition between
 sweeps from the plot. False will include these rays in the plot.
 No rays are filtered when the antenna_transition attribute of the
 underlying radar is not present.
edges : bool
 True will interpolate and extrapolate the gate edges from the
 range, azimuth and elevations in the radar, treating these
 as specifying the center of each gate. False treats these
 coordinates themselved as the gate edges, resulting in a plot
 in which the last gate in each ray and the entire last ray are not
 not plotted.
embellish: bool
 True by default. Set to False to supress drawing of coastlines
 etc.. Use for speedup when specifying shapefiles.
 Note that lat lon labels only work with certain projections.
raster : bool
 False by default. Set to true to render the display as a raster
 rather than a vector in call to pcolormesh. Saves time in plottingSkip to main content

For example, let’s change the colormap to something different

 high resolution data over large areas. Be sure to set the dpi
 of the plot for your application if you save it as a vector format
 (i.e., pdf, eps, svg).
alpha : float or None
 Set the alpha tranparency of the radar plot. Useful for
 overplotting radar over other datasets.
edgecolor : str
 Set the behavior of the edges of the pixels, by default
 it will color them the same as the pixels (faces).
**kwargs : additional keyword arguments to pass to pcolormesh.
File: ~/git_repos/pyart/pyart/graph/radarmapdisplay.py
Type: method

fig = plt.figure(figsize=[12, 8])
display = pyart.graph.RadarMapDisplay(radar)
display.plot_ppi_map('corrected_reflectivity',
 sweep=3,
 vmin=-20,
 vmax=60,
 projection=ccrs.PlateCarree(),
 lat_lines = np.arange(38, 39.5, .25),
 lon_lines = np.arange(-107.5, -106.5, .25),
 cmap='pyart_Carbone42')
plt.show()

Skip to main content

Or, let’s view a different elevation scan! To do this, change the sweep parameter in the plot_ppi_map

function.

Plotting an RHI
Another common plot that is requested by the radar community is a Range Height Indicator (RHI) Plot.

Fortunately, Py-ART has a utility to help us create one of these from our radar!

fig = plt.figure(figsize=[12, 8])
display = pyart.graph.RadarMapDisplay(radar)
display.plot_ppi_map('corrected_reflectivity',
 sweep=6,
 vmin=-20,
 vmax=60,
 lat_lines = np.arange(38, 39.5, .25),
 lon_lines = np.arange(-107.5, -106.5, .25),
 projection=ccrs.PlateCarree(),
 cmap='pyart_Carbone42')
plt.show()

Skip to main content

Read in an RHI file

During this same time period during SAIL, the ARM program collected RHI scans, which provide a vertical

cross section through the preciptiation! Let’s read in one of those files. The IO line is the same!

Plot our RHI

We want to use the RadarDisplay here to visualize, using the reflectivity field (DBZ)

Note - this is uncorrected data, so be sure take caution working with this

rhi_file = '../data/sample_sail_rhi.nc'
rhi_radar = pyart.io.read(rhi_file)

radar = pyart.graph.RadarDisplay(rhi_radar)
radar.plot("DBZ", vmin=-20, vmax=60,)
plt.ylim(0, 5)
plt.savefig("sample-rhi.png", dpi=300)

Skip to main content

Add a “Pseudo-RHI” from our PPI data

But let’s say we wanted to compare the vertical resolution we get from an RHI, compared to PPI… we can

do this with Py-ART!

Now, notice how coarse the resolution of the precipitation region!

Load our PPI data back in
file = '../data/sample_sail_ppi.nc'
radar = pyart.io.read(file)
radar

Create a cross section at our 334 degree azimuth
xsect = pyart.util.cross_section_ppi(radar, [328])

colorbar_label = 'Equivalent \n reflectivity factor \n (dBZ)'
display = pyart.graph.RadarDisplay(xsect)
display.plot('corrected_reflectivity', 0, vmin=-20, vmax=60, colorbar_label=colorbar_label
plt.ylim(0, 5)
plt.tight_layout()

Skip to main content

Summary
Within this notebook, we covered the basics of working with radar data using pyart , including:

Reading in a file using pyart.io

Investigating the Radar object

Visualizing radar data using the RadarMapDisplay

What’s Next

In the next few notebooks, we walk through gridding radar data, applying data cleaning methods, and

advanced visualization methods!

Resources and References
Py-ART essentials links:

Landing page

Examples

Source Code

Mailing list

Issue Tracker

https://arm-doe.github.io/pyart/
https://arm-doe.github.io/pyart/examples/index.html

