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- How do we measure and
2 L) manage snowfall and snowpack?

fss Mt Eyak SNOTEL station
- toolkit.climate.gov

Snow Telemetry (SNOTEL)
network in the Western US

Li et al., 2017



What about snow in the future”? Models projections!

For this study, we use 9 CMIP6 GCMS

+ Bias-corrected
+ Dynamically downscaled with WRF

= high spatial resolution, any physical
variable, any frequency, ensemble

Downscaled reanalysis data: Rahimi et al. (2022)
Downscaled CMIP6 ensemble: Rahimi et al., Submitted
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Snow distribution
by decade from
downscaled
projections by
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“These predictions depend on the presence of

measurable snowpack, as well as a consistent
relationship between observed peak snow conditions

and streamflow.” -Livneh and Badger 2020
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“These predictions depend on the presence of

measurable snowpack, as well as a consistent
relationship between observed peak snow conditions

and streamflow.” -Livneh and Badger 2020
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“These predictions depend on the presence of 50NN
measurable snowpack, as well as a consistent '
relationship between observed peak snow conditions i
and streamflow.” -Livneh and Badger 2020
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What do we do about this?

1. Use SNOTEL locations to predict maximum annual SWE across the Western
US from a dynamically downscaled multi-model CMIP6 GCM ensemble with a

variety of models
2. Explore the characteristics and underlying assumptions behind successful

and unsuccessful data models

11



Model 1: Linear regression

For each basin, use
SNOTEL stations to predict
SWE within that basin
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Error explosion by end of 21st Century:
Snowpack estimation is not currently resilient
to expected changes in snowfall/snowpack 12



Data Model Complexity?

What else should we try?

What characteristics should data
models have?

Do they need more data or do
they need a different structure?

MAE (cm) SWE Estimation
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— KNN_roll20
—— MLPR roll 20
lasso_roll 20
— linreg 20
—— linreg roll 20
— ridge roll 20

|
2000 2020 2040 2060 2080

Higher complexity data models reduce
projection errors

2100
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Western US SWE RMSE vs More Predictors

Data + Model Complexity?

_5 120 -

©
There are many observations that - £
indirectly constrain snowpack. g1 2

©

What characteristics should data models § ”;J -
have to constrain snowpack? 5 n

£
We find that more indirect observations % £ 60-
reduce RMSE in SWE. = W
With minimal observations, a low E 40 1
complexity data model is needed. With

——— Linear Regression
~——— Random Forests

more obs, a higher complexity model is Data_1
needed. But when obs over-constrain
SWE, the data model doesn’t matter.

Data_1 = ['knn_snotel', 'Longitude', 'Latitude’']

Data_2 = Data_1 + ['Elevation', 'Slope', 'Aspect’,

Data_3 = Data_2 + ['Cum-fSCA']

Data_4 = Data_3 + ['Cum-precip', 'Cum-snow', 'Mean-temp',

Data_S = Data_4 + ['ASO-proxy']

Data_2

'Veg-Type',

'PDD-sum']

Data_3

‘Veg-Frac']

Data_4 Data_5

More Data '
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Connections to Field Campaigns like SAIL

® Field campaigns like SAIL show how well predictors of snowfall and snowpack can
actually be constrained.

e Snowfall can be constrained to <10% of daily ground accumulation totals with direct
observations, while there was >50% uncertainty without those obs.

® \Where not over-constrained, SWE predictions improve with reduced precip uncertainty

Radar Fetimated Snowfall Rate at ARM AMF Site
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Attributes of climate-resilient snow estimation models

Represent nonlinear, nonstationary relationships
Resilient to loss of an input station

Take cautious advantage of out-of-basin information
Benefit from but do not require specialized observations

B W~

16



Attributes of climate-resilient snow estimation models

Represent nonlinear, nonstationary relationships
Resilient to loss of an input station

Take cautious advantage of out-of-basin information
Benefit from but do not require specialized observations

B W~

We think the machine learning community has answers to this!

17
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1: Increase the scale and resolution of direct observations
2: “A successor. We need to find ways to identify nonstationary probabilistic

models of relevant environmental variables and to use those models to

optimize water systems.”

AND takes into account the shifting availability of snow observation
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Year when mean SWE falls below historical
Ensemble-mean historical 10t percentile SWE [mm] 10t percentile

\

Bias corrected experiments only

Correlation between emergence year and historical p10: -0.38
Correlation between p10 and WRF elevation: 0.19

Correlation between emergence year and WRF elevation: 0.07 o



SAIL

How useful is the SAIL precip data?

Make a prediction of the ASO field using PRISM precip

Repeat with SAIL precip data

Should be better with the SAIL data because they are more accurate — this
gives us an idea of how bad it is to use PRISM as a “good” source for precip
(or daymet or whatever)

— we can use a more complex model from more sparse data that are more
certain in order to get a trustworthy idea of what snow looks like without
relying on highly uncertain driving data

25
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Snow water equivalent volume [m?]
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Change in shared properties — change in correlation
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