

Probing Processes for Deep Convective Cloud Growth using LASSO-CACTI

Zhe Feng, Enoch Jo, Jim Marquis, Adam Varble

2023 ASR PI Meeting Breakout – LASSO

Contributions: William Gustafson Acknowledgment: LASSO Team

PNNL is operated by Battelle for the U.S. Department of Energy

Funding support: ICLASS SFA

ARM

Integrated Cloud, Land-Surface,& Aerosol System Study ICLASS

Motivation and Objective

- Deep convection initiation (DCI) and growth processes are poorly understood; near-cloud environmental factors and key cloud structures are difficult to observe
- CACTI (Varble et al. 2021) provided large samples of DCI and growth with collocated radar/satellite and environmental measurements (Feng et al. 2022)
- Low/mid-level RH strongly differentiate CI vs. non-CI events, pointing to entrainment-driven dilution processes, but do not differentiate deep vs. shallow CI (Marquis et al. 2023)
- Goal: Better understand processes controlling deep convective cloud growth under a variety of realistic environmental conditions using LASSO-CACTI ensemble simulations

Feng et al. (2022) MWR

Marquis et al. (2023) MWR

Track Convective Cells in LASSO Simulations

- We applied PyFLEXTRKR (Feng et al. 2023) to track convective cells in LASSO simulations at CPM and LES grid spacings
 - **Radar** tracking: Δx: 2.5 km & 500 m
 - LASSO tracking:
 - ✓ Native ∆x: 2.5 km & 500 m
 - ✓ Coarsen Δx : 100 m → 500 m
- Environmental conditions for each tracked cell are obtained at CI locations in LASSO
- A total of 9 LASSO simulation days with 34 ensemble members are being analyzed

PyFLEXTRKR on GitHub

LASSO Reproduces Important Observed **Convective Cell Statistics**

- Model cell lifetime agrees well with observations, except for larger proportion of short-lived cells
- LASSO captures relationship between wider and more intense cells, but has more frequent strong cells than OBS
- Ongoing work examining resolution sensitivity on convective updraft characteristics to ambient environments

Deriving Updraft Statistics in Tracked Cells

- Identify updraft cores within each tracked cell mask
- Calculate and save a suite of updraft profile statistics:
 - Width, strength, fluxes
 - Thermodynamics, environments

*Selected a 3-h period with large number of CIs, output at 15 s

Obtaining Updraft Evolution for Tracked Cells

- Extend updraft statistics prior to the time of CI (i.e., when cell is first detected)
- Examine complete updraft evolution

Entrainment & Detrainment ...

 \dots is calculated on the 2 m/s updraft, 0.01 g/kg cloud water surface

using the "direct" method of Dawe and Austin (2011)

ud water surface and Austin (2011)

Timeseries of Vertical Profiles

- Shallow cells entrain cooler environmental •
- deep ones
- of the updrafts.

See poster by Enoch Jo on Wednesday (Session 4)

Cells separated into shallow & deep categories

air in greater quantities relative to their VMF

This dilutes the shallow cells more than the

Buoyancy of shallow cells drops, followed by the updraft speeds, and subsequent decay

Does orographic ascent structure (in)directly affect location of DCI?

Kinematic characteristics:

Mean of cell containing portion - mean of non-cell portion (@ CI - 30 min)

Orographic Ascent ($w > 0.5 \text{ m s}^{-1}$)

See poster by Jim Marguis on Wednesday (Session 4)

- Examining how model resolution affects the relationships between near-cloud environments and updraft characteristics
- Quantifying how entrainment-driven dilution, which controls convective cloud depth and precipitation, affects updrafts
- Examining correlations between orographic ascent structure and low-level cloudy updraft properties