

UND NORTH DAKOTA

How does vertical wind shear influence hydrometeor characteristics in supercell thunderstorms?

Jake P. Mulholland¹, Christopher J. Nowotarski², John M. Peters³, Hugh Morrison⁴, and Erik Nielsen²

2 = Texas A&M University

1 = University of North Dakota

3 = Pennsylvania State University

4 = National Center for Atmospheric Research

ASR Atmospheric System Research

ENERGY

Office of Science

Background and motivation

 Vertical wind shear (shear; *S*) thought to increase supercell longevity by increasing distance between updrafts and downdrafts/precipitation

> e.g., Markowski and Richardson (2010; BOOK)

 Stronger/wider updrafts amid strong shear may foster more hydrometeors, leading to greater updraft hydrometeor loading

 e.g., Warren et al. (2017; MWR); Jo and Lasher-Trapp (2022; JAS)

 Unclear which layer of shear is relatively most determinative of hydrometeor concentration and displacement in supercell updrafts

Markowski and Richardson (2010; BOOK)

Scientific questions

Scientific questions:

(1) How does systematically varying shear magnitude across different vertical layers affect hydrometeor concentration and displacement relative to supercell updrafts?

(2) Do the results from (1) hold true across a range of free tropospheric relative humidity environments (dry vs. moist)?

Scientific questions

- Scientific questions:
- (1) How does systematically varying shear magnitude across different vertical layers affect hydrometeor concentration and displacement relative to supercell updrafts?

(2) Do the results from (1) hold true across a range of free tropospheric relative humidity environments (dry vs. moist)?

Hypothesis

Hypothesis: in the case of stronger, compared to weaker, shear

Previously shown

(e.g., Peters et al. 2019; JAS)

- Faster storm motions →
- $_{\odot}$ Stronger low-level storm-relative inflow \rightarrow
- $_{\odot}$ Wider, less dilute, and stronger updrafts ightarrow
- $_{\odot}$ Wider region over which condensate forms \rightarrow
- Greater updraft hydrometeor loading (at least initially)

... but ...

- \circ Stronger storm-relative winds \rightarrow
- Greater amount of condensate laterally "spread out" downshear →
 Wider precipitation area and reduced updraft hydrometeor loading

Numerical modeling framework

- Idealized simulations using Cloud Model 1 (CM1), release 20.3
 - Horizontally homogenous
 - Steady base state
 - \circ No surface fluxes, terrain, or Coriolis
- +3 K "warm bubble" convection initiation technique

 Horiz. radius = 10 km; Vert. radius 1.4 km; Centered at ground level
- 250 m horiz. grid spacing; 50 m to 250 m stretched vert. grid spacing with 168 vertical levels

 225 x 225 x 20 km³ domain
- Morrison two-moment microphysics scheme ("ihail" = hail)
 - o Sensitivity tests:
 - (1) NSSL two-moment microphysics scheme
 - (2) Altering specified cloud droplet number concentration in Morrison scheme
- 3-h simulations; 10-min output

CM1 Base States – Thermodynamics

1	Parcel type	<u>CAPE (J kg⁻¹)</u>	<u>CIN (J kg⁻¹)</u>
1	Surface-based	1725	-50

Weisman and Klemp (1982; MWR)

CM1 Base States – Thermodynamics

Parcel type	<u>CAPE (J kg⁻¹)</u>	<u>CIN (J kg⁻¹)</u>
Surface-based	1725	-50

Weisman and Klemp (1982; MWR)

CM1 Base States – Shear

Reflectivity, outflow, w composites

- Stronger 1-6 km AGL shear leads to wider mid-level updrafts, wider near-surface precipitation areas, and greater downshear precipitation spread
- Weaker shear leads to more "undercutting" of updrafts by cold pools

Reflectivity, outflow, w composites

ML25

ML50

- Stronger 1-6 km AGL shear leads to wider mid-level updrafts, wider near-surface precipitation areas, and greater downshear precipitation spread
- Weaker shear leads to more "undercutting" of updrafts by cold pools

Updraft & reflectivity area time series

90-180 min

 Stronger 1-6 km AGL shear leads to wider mid-level updrafts and wider near-surface precipitation/reflectivity areas

Updraft & reflectivity area time series

90-180 min

 Stronger 1-6 km AGL shear leads to wider mid-level updrafts and wider near-surface precipitation/reflectivity areas

Core updraft characteristics

w ≥ 20 m s⁻¹

- Stronger 1-6 km AGL shear leads to...
 - Wider core updrafts
 - Less dilute core updrafts
 - Greater hydrometeor loading
 - o Greater fraction of total hydrometeor mass within core updrafts

Core updraft characteristics

w ≥ 20 m s⁻¹

90-180 min avg

Stronger 1-6 km AGL shear leads to...

Stronger low-to-mid-level updrafts; stronger downdrafts everywhere
 Greater buoyancy and thermal buoyancy (at low- and upper-levels)

Updraft vs. precip core displacement

90-180 min

- Stronger 1-6 km AGL shear leads to greater separation between midlevel updraft core and near-surface precipitation core centroids
- Separation between mid-level updraft core and near-surface precipitation core centroids increase with time for stronger shear

Updraft vs. precip core displacement

- Stronger 1-6 km AGL shear leads to greater separation between midlevel updraft core and near-surface precipitation core centroids
- Separation between mid-level updraft core and near-surface precipitation core centroids increase with time for stronger shear

Outside core updraft characteristics

w < 20 m s⁻¹

- Stronger 1-6 km AGL shear leads to...
 - o Greater hydrometeor mass outside core updrafts
 - Greater ice sublimation at upper-levels and rain evaporation at low-levels

- Stronger 1-6 km AGL shear leads to...
 - Larger regions of ice sublimation at upper-levels and rain evaporation at low-levels, especially downshear

ML25

ML50

- Stronger 1-6 km AGL shear leads to...
 - Larger regions of ice sublimation at upper-levels and rain evaporation at low-levels, especially downshear

- Stronger 1-6 km AGL shear leads to...
 - Larger regions of ice sublimation at upper-levels and rain evaporation at low-levels, especially downshear

ML25

ML50

- Stronger 1-6 km AGL shear leads to...
 - Larger regions of ice sublimation at upper-levels and rain evaporation at low-levels, especially downshear

Outside core updraft characteristics

CTRL

MOIST

w < 20 m s⁻¹

- Higher free tropospheric RH leads to...
 - Greater hydrometeor mass outside core updrafts

DRY

- Greater ice sublimation at upper-levels and rain evaporation at low-levels
- Same sensitivities to stronger 1-6 km AGL shear as shown previously

Conclusions and discussion

- Increasing <u>1-6 km AGL shear</u> leads to ...
 - Wider updrafts with greater hydrometeor loading
 - $_{\odot}$ Greater downshear "spread" and area of precipitation
 - $_{\odot}$ Greater hydrometeor mass outside of core updrafts
 - $_{\odot}$ Greater rates of ice sublimation and rain evaporation
- Increasing free tropospheric relative humidity leads to ...
 - Wider updrafts and near-surface precipitation areas
 - Slightly greater hydrometeor loading (especially for weaker sheared updrafts)
 - o Greater hydrometeor mass outside of core updrafts
 - $_{\odot}$ Greater rates of ice sublimation and rain evaporation
- Results are consistent when changing <u>microphysics scheme</u> and <u>cloud droplet number concentration</u>

 \circ Not explicitly shown here, but I am more than happy to share if requested!

Thank you for your attention! Any questions?

jake.mulholland@und.edu

Mulholland, J. P., C. J. Nowotarski, J. M. Peters, and E. R. Nielsen, 2023: How does vertical wind shear influence hydrometeor characteristics in supercell thunderstorms? *Mon. Wea. Rev.*, **Submitted**.

