

On the quantification of cumulus entrainment and detrainment

Daniel Kirshbaum¹, Hugh Morrison², and John Peters³ ¹McGill University, Montreal, QC (CANADA) ²NCAR, Boulder, CO (USA) ³The Pennsylvania State University, State College, PA (USA)

Bulk vs direct entrainment and detrainment

- Bulk: infer mixing based on cloud and environmental tracers (Siebesma and Cujpers 1995)
 - Quantification of cloud *dilution*

Direct: evaluation of mass fluxes

across cloud edges (Romps 2010)

Questions

- 1. Direct entrainment is cumbersome to code and expensive to compute. Can bulk formulation be improved to provide similar insights?
- 2. Despite recent progress, we still lack a causal explanation for entrainment, detrainment, and dilution
 - Difficult to disentangle cause and effect from correlations

The "semi-direct" method

- A simple bulk estimate of *direct* E/D
 - Based on tracer-budget equation (e.g., SC95)
- Two key assumptions
 - Entrained air source: core shell (including top)
 - Detrained air source: core boundary

$$\epsilon_{\rm sd} = \left(\frac{\phi_b - \phi_e}{\phi_b - \phi_s}\right) \epsilon_{\rm SC95} + \left(\frac{\phi_c - \phi_b}{\phi_b - \phi_s}\right) \delta_{\rm SC95}$$
$$\delta_{\rm sd} = \left(\frac{\phi_c - \phi_s}{\phi_b - \phi_s}\right) \epsilon_{\rm SC95} + \left(\frac{\phi_s - \phi_e}{\phi_b - \phi_s}\right) \delta_{\rm SC95}$$

Numerical simulations

- cm1 model v21 (Bryan and Fritsch, 2002)
 - dx=dy=dz=50 m
 - Single-cloud configuration (central heat patch)
 - Modified LBA simulation (Amazonia)

Vary surface heat patch radius R_h=[0.1,0.2,...,1] km "R100", "R200", etc.

Evolution of bulk cloud metrics

- All metrics evaluated over $|r| < 6R_{\rm h}$
 - Cloud-base mass flux (*m*_b)
 - Maximum LWP (LWP_{max})
 - Maximum cloud-top height
- Systematic increase in all metrics with increasing $R_{\rm h}$

daniel.kirshbaum@mcgill.ca

Verification of semi-direct method

- Basic cloud entity: buoyant cloud "core"
- Parcel-based direct E/D (Yeo and Romps 2013)
 - R1000 case, SGS deactivated
- Highly accurate in low-to-mid troposphere
 - Some problems aloft, due to changing nature of mixing
 - $_{\odot}$ Deferred to future work
- For now, exploit agreement below 5 km to investigate parameter sensitivities

Sensitivities of ϵ, δ to A_c

- Collect all cores over full R_h ensemble, separate into equal percentile bins, take average
- Mostly monotonic decrease in all measures with increasing cross-sectional area (A_c)
- ϵ, δ correlates similarly with core-mean W_c, b_c, M_c (not shown)
 - Which parameters actually *control* ϵ, δ ?

Physical interpretation

• Entrainment and detrainment often decomposed as (e.g., de Rooy et al. 2013)

 $\epsilon = \epsilon_{\rm turb} + \epsilon_{\rm dyn}$ $\delta = \delta_{\rm turb} + \delta_{\rm dyn}$

- Shortcomings
 - Most mass transfer is absorbed into turbulent component
 - But not all of this transfer is *actually* turbulent
 - Simple turbulence scaling arguments may not accurately quantify this component

A complementary decomposition

Reversible vs irreversible

 $\epsilon = \epsilon_{\rm rev} + \epsilon_{\rm irr}$ $\delta = \delta_{\rm rev} + \delta_{\rm irr}$

- Builds on semi-direct assumptions to gain insight
- Can estimate from *instantaneous* 3D data, assuming scale separation between smaller drafts and larger cloud
- Cloud

- How do shell parcels "activate"?
 - 1. REVERSIBLE lifting to level of free convection
 - 2. IRREVERSIBLE turbulent mixing with core boundary

- How do boundary parcels "deactivate"?
 - 1. REVERSIBLE loss of buoyancy or vertical momentum
 - 2. IRREVERSIBLE turbulent mixing with core shell

The adiabatic component (conceptually)

• Entrainment: core shell

• Detrainment: core boundary

The diabatic component (conceptually)

- Estimate turbulent scalar fluxes between boundary and shell, using same formulation as subgrid-scale (TKE) mixing
- Integrate fluxes around core perimeter, partition into E_{di}/D_{di} using boundary-shell critical mixing fraction (χ_{bs})

Decomposition results (sensitivity to A_c)

- Reversible component shows key similarities to semi-direct
 - Magnitudes \checkmark
 - A_c sensitivity \checkmark
 - Vertical variations $\checkmark X$
- Analyze the dominant reversible component to gain some insight

Sensitivity to A_c: interpretation

- Larger $A_c \rightarrow \text{smaller } \epsilon_{rev}$
 - $E_{\rm rev}$ increases linearly due to enhanced mixing, but $M_{\rm c}$ increases even faster
 - Relation vanishes when controlling for $w_{\rm c}$ or $b_{\rm c}$
- Larger $A_{c} \rightarrow \text{smaller } \delta_{rev}$
 - D_{rev} increases nearly linearly with A_c , but M_c increases even faster
 - Relation vanishes when controlling for $w_{\rm c}$ or $b_{\rm c}$
- Detrainment trend stronger due to differing feedbacks of ϵ, δ on $A_{\rm c}$

Raw and partial Spearman correlations (partial controls for $[w_c, b_c, P_c)$)

Sensitivity to A_c : interpretation (cont)

- Mostly negative trend between A_c and $[\epsilon, \delta]_{rev}$ is consistent with percentile-binning analyses shown earlier
- Why do correlations vanish when controlling for w_c , b_c , and P_c ?

daniel.kirshbaum@mcgill.ca

- Strong correlation between A_c and b_c
- Possible explanations:
 - 1. A_c controls ϵ, δ . Larger $A_c \rightarrow$ smaller $\epsilon \rightarrow$ larger $b_c \checkmark$
 - 2. b_c controls ϵ, δ . Larger $b_c \rightarrow$ smaller $\epsilon \rightarrow$ larger $A_c \times$

 $\succ A_{\rm c}$ must causally control ϵ, δ

 $\binom{\mathrm{km}}{2}$

-1

-0.5

Sensitivity to $P_{\rm c}$

- Larger $P_c \rightarrow$ larger ϵ (raw and partial)
 - Forced ascent of shell air \rightarrow activation
 - Trend strengthens when controlling for $\textit{b}_{\rm c}$ or $\textit{A}_{\rm c}$
- Larger $P_{c} \rightarrow \text{smaller } \delta$ (raw)
 - Forced ascent of boundary air \rightarrow less deactivation
 - Trend reverses when controlling for $b_{\rm c}$
 - > Enhanced ϵ at larger $P_{\rm c}$ reduces coreboundary *b*, promoting increased δ

 $> P_{c}$ correlates positively with *both* ϵ and δ

Raw and partial Spearman correlations (partial controls for [w_c, b_c, P_c))

Sensitivity to P_c : further interpretation

- Reversible ϵ reasonably matches semi-direct trend
- Reversible δ inconsistent with semi-direct trends
 - Again, increased ϵ reduces *b* in core boundary, favoring stronger δ

Conclusions

- Semi-direct provides a simplified method for estimating direct entrainment
 - Exploits that entrained and detrained air drawn from immediate core exterior and interior, respectively
- Reversible—irreversible decomposition builds on semi-direct assumptions to facilitate physical understanding
 - Adiabatic component dominant in current experiments
- Decomposition facilitates physical interpretation of controls on ϵ, δ
 - Inverse trend of ϵ with A_c : increased mixing can't keep pace with increased M_c
 - Positive trend ϵ with P_c : forced ascent induces activation of cloud-shell parcels