

Assessment of vertical CCN retrieval methods against in-situ CCN measurements

Gourihar Kulkarni

Poster session 2 #88

F. Mei, C. Sivaraman, J. Wang, J. Shilling, R. Newsom, J, Muelmenstaedt, M. Christensen, L. Berg, J. Fast..

PNNL is operated by Battelle for the U.S. Department of Energy

Objective:

Assessment of vertical CCN retrieval methods against in-situ CCN observations. How measured CCN agree with the retrieved CCN?

Data:

HI-SCALE observations; Ground – RL, PBL, CCN, Aerosol, Met data; RNCCN ARM vap; **CCN** retrieval methods

Implications:

This work will help us to <u>routinely calculate vertically resolved CCN</u> to study ACI processes. Construct a CCN climatology to better quantify ACI effects. It should be noted that estimating CCN budget at the base of a liquid cloud remains highly uncertain.

Fast et al. 2019

Forward looking Aerial View and unfiltered Raw Data; HiSCALE field campaign

We have time series of airborne Aerosol and CCN data + air met data

IOP2 flights (#16): Aug30a, 30b ; Sept 1, 3, 4a, 4b, 6, 7a, 7b, 9, 10, 11, 13, 15a, 15b, **17**

Altitude (km)

Forward looking aircraft movie; Supplementary, Kulkarni et al. 2023

Assessment at constant altitude within ± 100 m vertical distance.

CCN data from multiple legs (#27) but that are at constant altitude are binned and averaged.

distance away from the site.

Data is screened based on the distance away from the site.

Collocation distance window: 3, 9, 27, and 81 km horizontal

Fast et al. 2022

Time-Height display of feature mask

RL product provides feature mask:

Aerosol,

rain, liq_cloud, ice_cloud

> Clear sky days are used in this analysis.

Extn values that overlap with flight periods are used.

7

Literature Methods

#	Method	λ (nm)	SS (%)	Instrument	Notes	
Α	Ghan et al 2006	355	2.1 to 3.6	Ground based RL and	RNCCN	cation distance
	a) gamma, b) kappa, c) AOS			CCNc	gamma	
					based	3 km
В	Mamouri and Ansmann 2016	355	0.15 to	Ground based	Field site	JKIII
			0.4	polarization lidar		
С	Lenhardt et al 2023	355; 532	0.22 to	In-situ HSRL and	ORACLES	9 km
			0.4	CCNc		
D	Patel et al 2022	355;532;	0.34	In-situ HSRL and	ORACLES	
		1064		CCNc		27 km
E	Liu and Li 2014	450	0.1 to 0.4	Ground TSI neph and	Not used	81 km
				CCNc		OIKIII
F	Shinozuka et al 2015	500	0.2 to 0.6	In-situ TSI neph and	Not used	
				CCNc		

R is better when distance is short.

Z transformation (measure of 95% Cl in the R) shows wide range.

One can derive best fit slope (with intercept = 0) and compare against previous methods.

Grid (km)	R ²	Z _r ; 95% Cl	RMSE (#/cm ³)	Best fit slope
3	0.55	0.27-0.94	170	4785
9	0.6	0.31-0.93	159	4902
27	0.52	0.21-0.92	187	4813
81	0.35	0.21-0.81	253	4609

Mean (x) and range (1SD) of airCCN from the constant altitude legs were compared with the retrieved CCN.

In-situ retrieval methods (Lenhardt and Patel) and RNCCN vap show agreement within one order of magnitude.

Ansmann method which is developed in a region dominated by dust shows poor agreement.

At 81km, the airCCN range (1SD) increases. Retrieval methods do not capture spatial variability.

Summary

Preliminary analysis show:

- Estimating vertical CCN budget is still challenging. Under well mixed boundary layer conditions, certain existing retrieval methods show agreement within order of magnitude.
- Correlation between airCCN and just extinction can be obtained with $R^2 = 0.5$.
- For certain days, the airCCN data shows broader range when using 81km distance window indicating presence of broader range of aerosol properties. Sensitivity to the sampling region.
- For all IOP2 days, certain methods agree within one order of magnitude.

Thank you

