National Aeronautics and Space Administration

CLARREO Pathfinder Mission Update & Overview Yolanda Shea & the CPF Team

ARM/ASR Joint User Facility/PI Meeting 2023 August 7, 2023

CLARREO Pathfinder on ISS: Summary

- Mission Purpose: Take climate-critical high accuracy measurements of Earth reflectance and intercalibrate with CERES (broadband) & VIIRS (multi-spectral) shortwave channels
- LASP-Led Reflected Solar Spectrometer (350 2300 nm) & Payload
- Nominally 1-year mission operations (but hopefully more!)
 + 1-year science data analysis
- Launch Readiness: ~Spring/Summer 2024
- Launch: TBD (ISS "Traffic Jam") active work with NASA's Earth Science Division

https://clarreo-pathfinder.larc.nasa.gov/

Objective #1: High Accuracy SI-Traceable Reflectance Measurements

Demonstrate on-orbit calibration ability to reduce reflectance uncertainty by a factor of **5-10 times**

compared to the best operational sensors on orbit.

Objective #2: InterCalibration Capabilities

Demonstrate ability to transfer calibration other key RS satellite sensors by intercalibrating with CERES & VIIRS.

	Objective #1	Objective #2
Uncertainty	Spectrally-resolved & broadband reflectance: $\leq 0.3\%$ -0.6% (1 σ)	Intercalibration Methodology Uncertainty: $\leq 0.3\%$ (1 σ)
Data Product	Level 1A: Highest accuracy, best for intercal, lunar obs Level 1B: Approx. consistent spectral & spatial sampling, best for science studies using nadir spectra	Level 4: One each for CPF-VIIRS & CPF-CERES intercal. Merged data products including all required info for intercal analysis

CLARREO Pathfinder Payload

Novel Measurements: CLARREO Pathfinder will be *the first* Earth Science mission with its *combination* of high accuracy, spectral range, spectral resolution, and spatial resolution.

CPF-Target Instrument Intercalibration

- An idealized intercalibration setup has perfectly matched data in time, space, angles, and wavelengths
- Realistic intercalibration measurements have finite differences in sampling, thereby resulting in several sources of uncertainty
 - Spatial mismatch
 - Angular differences (SZA, VZA, and RAA)
 - Spectral band differences
- CPF will demonstrate a state-of-the-art intercalibration methodology mitigating the uncertainties from imperfect data matching

o 2-axis pointing capability

CPF-Target Intercalibration Uncertainty Sources

CPF Intercalibration Benefits

Core Mission Direct Targets (CERES Sp & VIIRS)

Earth Energy Imbalance Spectral Response Calibration evaluation across dynamic range

Independent Verification of Radiometric Consistency between multiple flight models (e.g. CERES, VIIRS)

Climate Data Record Continued Development, Improved Quality

MODIS-VIIRS Dark Target & Deep Blue Aerosol, Cloud Continuity Products (20+ year records!)

Lunar Reflectance Characterization

Complement to ARCSTONE & airLUSI Supplementing inputs to GIRO, ROLO, SLIMED, etc lunar char. models

Pseudo-Invariant Earth Targets

Deep Convective Clouds Hyperspectral, multi-angle land targets reflectance Improved PICS uncertainty characterization

Augmenting Existing Intercalibration Approaches GSICS Standard?

e.g. All-sky tropical ray matching, Surface PICS, DCCs, etc

Libya4 – Viewing Zenith Angles for 1 Year (2017)

Leveraging the CPF Spectrum

Predecessor & Complement to Several Missions

Decadal Survey Missions PACE **TRUTHS/Libra CERES-Libera** Connection

Cloud, aerosol, water vapor, and surface hyperspectral retrieval algorithm development

Developing a Climate Benchmark Prototype

Critical for monitoring geophysical variable changes to provide climate model constraints

Development of Climate Change Attribution Techniques

Evaluating temporal variability of spectral radiation

Dr. Jeff Mast, new LaRC NPP fellow, will be developing hyperspectral ice cloud retrievals.

Reasons to be excited about CPF

- High accuracy measurements critical for detecting climate trends

 e.g. Development of climate benchmark prototypes
- Wealth of possibilities for additional RS hyperspectral science studies

 e.g. New and complementary retrieval algorithms
- Reference intercalibration capabilities are far-reaching across Earth Science measurements
 - Intercalibrating (some) concurrently operational RS sensors
 - Support for GSICS: Global Space-based Inter-Calibration System
 - Improved characterization of The Moon & pseudo-invariant calibration sites (improving past instruments' calibration)

