

Capability Review – Shortwave Spectral Instruments

JENNIFER COMSTOCK

Pacific Northwest National Laboratory ARM/ASR PI Meeting Bethesda, MD, Aug. 2023

U

- ARM Triennial review outcomes
 - Develop plan to review ARM capabilities on a routine basis
 - Over the last year we have reviewed SACRs and spectral SW instruments
- Recent workshop reports and BAMS article identify hyperspectral measurements have significant potential to provide constraints on:
 - Cloud microphysical processes
 - Aerosol-cloud interactions
 - Broken clouds
 - Cloud thermodynamic phase and mixed-phase clouds
 - 3D cloud properties when combined with scanning radar

ARM Hyperspectral Instruments

Instrument	Data Availability	Measurement	Wavelength (nm)	Primary Derived Parameters
RSS, RSS105	5/2003 – 5/2007 Retired	Direct, diffuse, total hemisph.	Si (360–1,070)	Radiative feedback using spectral signature of atmospheric constituents, 3D-radiative effects
SWS	5/2006 - 5/2015 4/2017- 4/2021	Narrow FOV radiance	Si (350–1,000), InGaAs (970– 2,200)	Aerosol and cloud optical depth, particle size, water path
SASHe	3/2011 – present	Direct, diffuse, total hemisph.	Si (350–1,000), InGaAs (970– 1700)	Radiative feedback using spectral signature of atmospheric constituents, 3D-radiative effects
SASZe	3/2011 – present	Narrow FOV radiance	Si (350–1,000), InGaAs (970– 1700)	COD, particle size, water path, cloud phase

Review Criteria – Scientific Impact and User Statistics

Scientific Impact

- Publications/Citations
 - SWS: 4/71
 - SASHe: 0/0
 - SASZe: 2/7
- ► Topics:
 - Radiative signatures and cloud properties in the cloud-to-clear transition zone
 - Cloud optical depth retrieval evaluation

User Statistics 2011 - 2021

Unique Users
SASHe – 32
SASZe – 43
SWS – 15

Review Criteria – Data Availability and Data Quality

Data Availability - AMFs

Data Availability - SGP

Data Quality

Site	Instrument/level	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	
SGP	SWS b1		1		2	2				3								
SGP	SASZE VIS a1													4	ļ			
TCAP	SASZE VIS a1																	
GVAX	SASZE VIS a0																	
GOAMAZON	SASZE VIS a1									2	5							
MAGIC	SASZE VIS a1																	
CACTI	SASZE VIS a1																	
LASIC	SASZE VIS a1												6					
SGP	SASHE VIS b1																	
TCAP	SASHE VIS b1																	
GOAMAZON	SASHE VIS b1																	
CACTI	SASHE VIS b1																	
LASIC	SASHE VIS b1																	

Review Criteria – Maintenance and Costs

Maintenance

- SASHe Significant more maintenance issues than SASZe and SWS or MFRSR
- Mainly due to issues with the shadowband
- Costs reasonable

Challenges and Recommendations

Challenges

- Maintaining SWS and SASZe calibrations
- Expert users only no retrieved quantities available for non-experts
- Software becoming difficult to support
- SWS spectrometers no longer supported
- SASHe has persistent banding issues and requires a redesign

Recommendations

- Increase usability of archived measurements
 - Thorough quality assessment
 - Flag periods of saturation and misalignment of shadowband
 - Apply PI algorithms to archive retrieved cloud properties
- Discontinue support of SWS
- Given the value of SW hyperspectral measurements – explore commercial options

