Convective invigoration: Untangling CCN impacts on deep convection

Wojciech W. Grabowski and Hugh Morrison

NCAR, Boulder, Colorado, USA

Office of Science

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

saturation adjustment: "cold" invigoration?

Untangling Microphysical Impacts on Deep Convection Applying a Novel JAS 2015 Modeling Methodology

WOJCIECH W. GRABOWSKI

National Center for Atmospheric Research,* Boulder, Colorado

saturation prediction: "warm" and "cold" invigoration?

JAS 2016

Untangling Microphysical Impacts on Deep Convection Applying a Novel Modeling Methodology. Part II: Double-Moment Microphysics

WOJCIECH W. GRABOWSKI AND HUGH MORRISON

Do Ultrafine Cloud Condensation Nuclei Invigorate Deep Convection?

WOJCIECH W. GRABOWSKI AND HUGH MORRISON

JAS 2020

Reply to "Comments on 'Do Ultrafine Cloud Condensation Nuclei Invigorate Deep Convection?""

WOJCIECH W. GRABOWSKI^a AND HUGH MORRISON^a

JAS 2021

Daytime convective development over land: A model intercomparison based on LBA observations

By W. W. GRABOWSKI^{1*}, P. BECHTOLD², A. CHENG³, R. FORBES⁴, C. HALLIWELL⁴, M. KHAIROUTDINOV⁵, S. LANG⁶, T. NASUNO⁷, J. PETCH⁸, W.-K. TAO⁶, R. WONG⁸, X. WU⁹ and K.-M. XU³

Daytime development of scattered ("popcorn") deep convection based on observations in Amazonia... Adv. Geosci., 49, 105–111, 2019 https://doi.org/10.5194/adgeo-49-105-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.

Separating physical impacts from natural variability using piggybacking technique

Wojciech W. Grabowski

National Center for Atmospheric Science, Boulder, Colorado, USA

"Cold" invigoration test:

Hour-by-hour statistics of convective updrafts: circle – mean, star – median box – standard deviation line – 10 to 90 percentile

"Cold" invigoration test:

small difference for mean updraft statistics and no difference between PRI and POL;
some impact on the strongest updrafts between saturation adjustment and saturation prediction ensembles...

"Warm" invigoration test:

Hour-by-hour statistics of convective updrafts:

circle – mean, star – median box – standard deviation line – 10 to 90 percentile

"Warm" invigoration test:

- weaker updrafts with supersaturation prediction;

- pristine (higher S) have noticeable weaker updrafts compared to polluted (lower S).

PRI vs POL simulations in Grabowski and Morrison (2016) and PRIS vs ADCN in Grabowski and Morrison (2020) with doublemoment bulk scheme:

- **small modification of the cloud dynamics in the warm-rain** zone due to differences in the supersaturation field;
- **no invigoration above the freezing level;**
- significant *microphysical* impact on convective anvils: higher droplet concentrations leading to higher ice concentrations, small ice terminal velocities and longer anvil life times.