
Tying in High Resolution E3SM with ARM Data (THREAD)

Examining The Diurnal Cycle of Local Convection in Doubly-Periodic SCREAM

August 8, 2023

Peter Bogenschutz, Yang Tian, and Yunyan Zhang

This work was performed under the auspices of the U.S. Department of Energy by LLNL under contract DE-AC52-07NA27344. LLNL IM: LLNL-PRES-852389.

Doubly-Periodic SCREAM

THREAD

- SCREAM = Simple Cloud-Resolving E3SM Atmosphere Model (Caldwell et al. 2021).
- Doubly-Periodic SCREAM (DP-SCREAM; Bogenschutz et al. 2023) developed as a tool to facilitate "rapid feedback" (akin to a single column model).
- SCREAM has problems aggregating convection.
- Here we use DP-SCREAM to analyze the transition from shallow-to-deep convection.

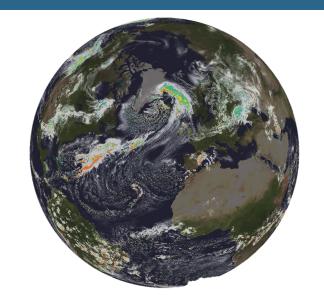


Figure courtesy Chris Terai. SCREAM DYAMOND2. White: liq+ice cloud water path. Colors: precip rate.

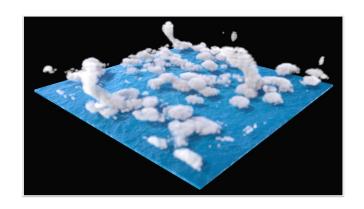
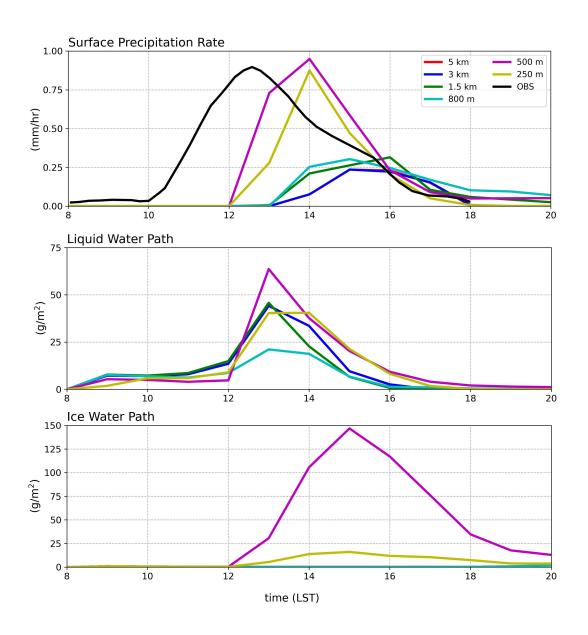
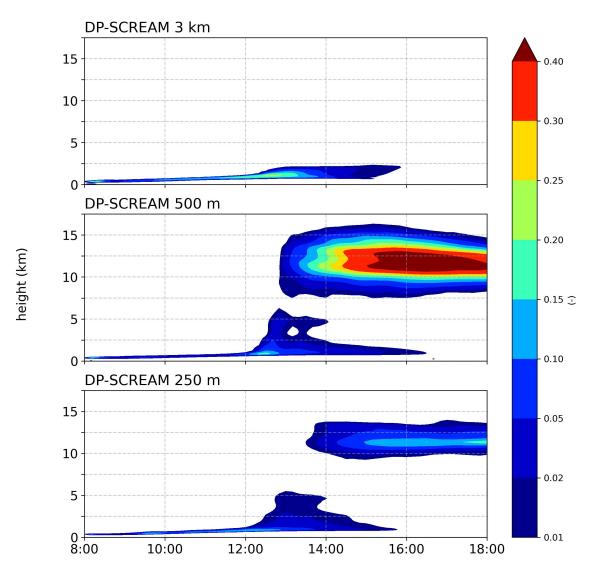
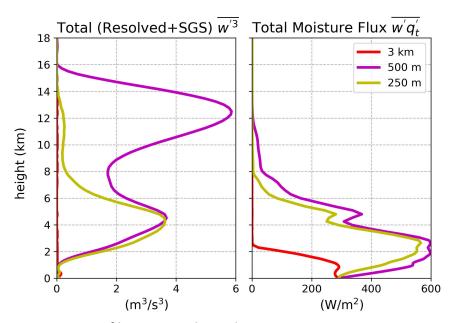



Figure courtesy Brad
Carvey. Simulation of
shallow convection using
DP-SCREAM with dx=dy=
100 m


GoAmazon: Locally Forced Transition

- We simulate a locally forced transition from shallow to deep convection (early single peak).
- Forcing from day 178 of GoAmazon (provided by Yang Tian).
- DP-SCREAM is run with horizontal resolutions ranging from 250 m to 5 km.
- All simulations:
 - —run in a 250 km x 250 km domain.
 - —use SCREAM's 128 layer grid.
 - use same code and settings (only time steps differ).

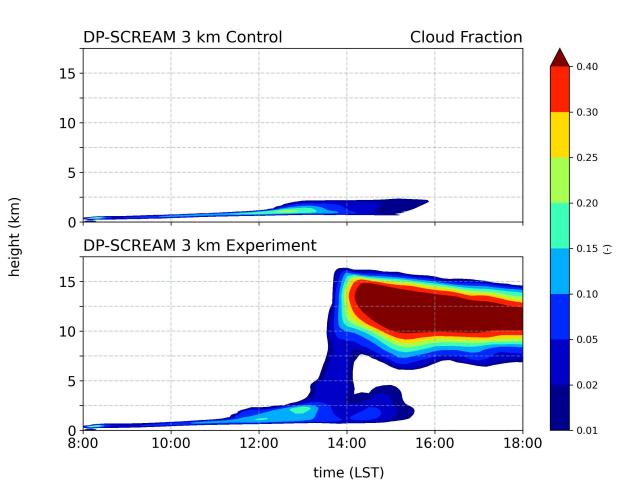


GoAmazon Cloud Fraction

Science Questions

- Why does SCREAM 3 km fail to transition?
- Why do the high res runs fail to match the observed peak timing of precipitation?
- Why is the strength of convection so different in the 250 m and 500 m runs?

Profiles averaged over hours 12 to 15 LST


time (LST)

Why Does SCREAM 3 km Fail to Transition?

- Hypothesis: Parameterized shallow convection does not reach high enough altitude.
- Sensitivity Test: Increase the magnitude of the SGS buoyancy flux in cumulus layers.

$$\overline{w'\theta'_v} = \overline{w'\theta'_l} + \frac{1-\epsilon_o}{\epsilon_o}\theta_o\overline{w'q'_t} + \left[\frac{L_v}{c_p}\left(\frac{p_o}{p}\right)^{R_d/c_p} - \frac{1}{\epsilon_o}\theta_o\right]\overline{w'q'_l}$$
 Liquid water flux
$$\overline{w'\theta'_v} = \overline{w'\theta'_l} + \frac{1-\epsilon_o}{\epsilon_o}\theta_o\overline{w'q'_t} + 2.0 \underbrace{\int_{c_p}^{L_v}\left(\frac{p_o}{p}\right)^{R_d/c_p} - \frac{1}{\epsilon_o}\theta_o}_{C_p}\left[\overline{w'q'_l}\right]$$

