Hemispheric Comparisons of Ice and Mixed-Phase Cloud Properties based on In-situ Observations and DOE E3SMv1 Model

Minghui Diao¹, Ching An Yang¹, Neel Desai¹, Xiaohong Liu², Yang Shi², Israel Silber³

1 San Jose State University

2 Texas A&M University

3 PNNL

DOE ASR DE-SC0021211 DOE RDPP DE-SC0023155 NSF OPP 1744965

DOE ASR/ARM PI meeting PIP/SIP Breakout August 9, 2023

The second s

Image from NASA worldview

Motivation to Improve Understanding of Ice and Mixed-Phase Clouds

Motivation

- Ice and mixed-phase clouds have highly complex macrophysical and microphysical properties
- 2. Evaluation of global climate model simulations of ice and mixed-phase clouds often relies on spaceborne observations

Yang, C.A.*, M. Diao, A. Gettelman, K. Zhang, J. Sun, W. Wu, G. McFarquhar, Ice and Supercooled Liquid Water Distributions over the Southern Ocean based on In Situ Observations and Climate Model Simulations, Journal of Geophysical Research: Atmosphere, 126, e2021JD036045. https://doi.org/10.1029/2021JD036045, 2021.

Motivation to Improve Understanding of Ice and Mixed-Phase Clouds

Motivation

- Ice and mixed-phase clouds have 1. highly complex macrophysical and microphysical properties
- Evaluation of global climate model 2. simulations of ice and mixed-phase clouds often relies on spaceborne observations

Topics of this presentation:

- (1) Hemispheric comparisons of three cloud thermodynamic phases
- (2) Comparisons with E3SMv1 and v2
- (3) Secondary ice production in observations and simulations

Large differences between satellite and in-situ observations, as well as among three satellite products - CALIPSO, **CloudSat and DARDAR**

Frequency Bias

Developing A Global-Scale In-Situ Observation Dataset

- Aircraft-based in-situ observations at 1 Hz resolution

- A total of 14 campaigns: 11 NSF flight campaigns and 3 DOE campaigns (M-PACE, ISDAC, ACME-V)

- Typical cloud probes include Fast-2DC, CDP, 2DS and FSSP

Hemispheric Comparisons of Cloud Phase Frequencies

North Hemisphere (NH); Southern Hemisphere (SH)

- A spatial-aware comparison between in-situ observations and E3SMv2/EAMv2 simulations
- Model simulations miss the hemispheric differences of cloud phase frequencies for all three phases

Yang, Diao, et al., in prep

Supercooled Liquid Fraction (SLF) in the Two Hemispheres

- SLF is calculated as liquid water content / (ice water content + liquid water content) at 1 Hz, then average in each temperature bin
- In-situ observations show higher SLF in the SH than NH.
- E3SMv2 shows higher SLF in the NH than SH.

Spatial Heterogeneities of Cloud Phases in DOE MARCUS Campaign

Using lidar & radar to identify cloud phases in MARCUS campaign

Spatial heterogeneity – which type of ice phase cloud column does E3SM model mis-represent?

Desai, N.*, M. Diao, Y. Shi, X. Liu, and I. Silber. Ship-based Observations and Climate Model Simulation of Cloud Phase over the Southern Ocean, Journal of Geophysical Research: Atmospheres, 128, e2023JD038581. https://doi.org/10.1029/2023JD038581, 2023.

Ice-topped clouds, with pockets of ice and liquid below 0°C

Thin liquid cloud top with streaks of ice layers below

Impacts of Spatial Heterogeneities on Cloud Phase Frequencies

- 1. E3SMv1/EAMv1 shows similar frequency of singlephase or multi-phase cloud columns
- 2. Model mostly mis-represent pure ice phase columns, indicating the lack of spatial heterogeneity is *not* the main reason for this mode bias.

Desai et al. 2023

Secondary ice production processes

 At ice sub-saturated conditions, observations show high IWC and high Nice in NH, indicating secondary ice production (SIP)

2. E3SMv2/EAMv2 model do not show much ice phase at this condition, potentially underestimating ice phase due to SIP

3. Model shows better agreement near ice saturation.

Summary

Hemispheric comparisons of three cloud phases:

- Observations show higher ice phase freq in NH, and higher SLF in SH
- E3SMv2/EAMv2 shows opposite hemispheric differences for both

Diagnosis of the reasons behind underestimation of ice phase in simulations

- <u>Spatial heterogeneity</u>: E3SMv1/EAMv1 underestimates ice phase especially when the entire cloud column is ice
- <u>Thermodynamics</u>: E3SMv2/EAMv2 underestimates ice phase especially for sub-saturated condition, indicating underestimation of SIP processes, while the simulated near ice saturation is closer to the observations.