

ntegrated Cloud. and-Surface.& Verosol System Study

Predicting the Evolution of Shallow Cumulus Clouds with a Lotka-Volterra-like Model

August 9, 2023

Jingyi Chen¹

Collaborators: Samson Hagos¹, Jerome Fast¹, Zhe Feng¹

Pacific Northwest National Laboratory

PNNL is operated by Battelle for the U.S. Department of Energy

Introduction

Subgrid cloud parameterizations are essential components in numerical earth system models as they account for the effects of unresolved cloud processes. Unlike mass-flux schemes assuming uniform cloudy areas, our proposed empirical model considers the non-uniform distribution of cloudy areas. Lotka-Volterra equation is used to derive the time tendency of cloud size based on ten thousand individual lifecycles of shallow cumulus clouds, based on a large-eddy simulation conducted during the Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) field campaign in the U.S. Southern Great Plains. With this model, we expect a more accurate representation of the cloud lifecycle in convective parameterization.

HI-SCALE Shallow Cumulus Case

2

Predator-prey System for Cloud Growth

Cloudy area = total cloudy area × area fraction

 $\frac{dR}{dt} = R(c_1 - c_2 F) = c_1 R - c_2 RF$ $\frac{dF}{dt} = F(c_3 R - c_4) = -c_4 F + c_3 RF$ R: prey F: predator

Questions? jingyi.chen@pnnl.gov

3