Weak Low-Level Westward Transport Responsible for Most Biomass-Burning Aerosol Located Within the Remote Southeast Atlantic Boundary Layer

Paquita Zuidema, Tyler Tatro, Amie Dobracki, Rosenstiel School, University of Miami

The puzzle: prior to the AMF1 on Ascension Island (8S, 14.5W; LASIC), westward aerosol transport was presumed to occur through the free troposphere, with smoke entering the boundary layer through (slow) subsidence far to the southeast

Figure 3.1-2. Schematic of top of atmosphere (TOA) direct, semi-direct, and indirect aerosol effects on climate in the SE Atlantic and their relationship to science objectives stated below.

e.g., Redemann et al., ORACLES proposal

However: LASIC measurements indicate smoke is often present in the remote boundary layer, mostly during the months when free-tropospheric westerlies are weak

Figure 2. Time series of black carbon (black) and ΔCO (blue) from June 1, 2017, through September 15, 2017. Pink boxes indicate periods selected as major plume events. ΔCO was calculated for each month by removing

	% of rBC mass	% of detected continental fires
June	37	7
July	20	26
August	37	33
September	6	34

Backtrajectories indicate highest aerosol loading events during LASIC-2017 at Ascension come through direct, low-level, westward transport

CAMS CO (80th %ile @Ascension) lead-lag composites with 800hPa winds, 2003-2018