

Arctic Cloud-Base Ice Precipitation Properties for Constraining Models Retrieved Using a Bayesian Inference Method

## Israel Silber

Pacific Northwest National Laboratory



PNNL is operated by Battelle for the U.S. Department of Energy





# Why Focus on Cloud Base Ice Precipitation?

- Liquid cloud base precipitation can serve as the dominant cloud moisture sink
- The atmosphere underlying an ice-generating cloud can be super- and/or sub-saturated
- This could result in inconsistencies when comparing ESM output to observations
- Cloud base precipitation statistics provide observational process constraints for models
- Ground-based measurements provide an unmatched sensitivity and range gate separation



### Not influenced by the underlying atmosphere

### Supersaturated or subsaturated with respect to ice

2



- Markov Chain Monte Carlo (MCMC) algorithm
- The algorithm samples from distributions of Gamma PSD parameters and different ice habit mixtures, among other sampled variable distributions
- KAZR and HSRL observations from the ARM • North Slope of Alaska site spanning more than 7 years





#### Yang et al., 2013





- Using in-situ measurements and retrievals from several M-PACE flight legs
- Equivalent co-located ground-based instrument suite
- IWC and total ice number concentration (Ni<sub>tot</sub>) Measurements are within range of retrieval output







# **Cloud Base Precipitate Rates**

- Ice PSD shape parameter  $\mu$  averages at ~4
- Mean IWC of ~0.03 g m<sup>-3</sup> (factor of 3 uncertainty)
- Cloud base ice precipitation rate ( $R_{CB}$ ) averages at ~0.06 mm h<sup>-1</sup> •
- Mean cloud base updrafts of 12 cm/s, significantly smaller than previous estimates
- Cloud base total ice number concentration  $N_{itot}$  range 0.01 to more than 100 L<sup>-1</sup>







# **N**<sub>itot</sub> and Cloud Base Temperature

- Exponential increase in  $N_{itot}$  with decreasing cloud base temperature  $(T_{CB})$  as expected from primary ice nucleation
- Local N<sub>itot</sub> enhancements around -15 and -5 C, suggesting potential secondary ice production signatures







- What if the implemented habits used here do ۲ not have sufficiently extreme aspect ratios?
- $N_{itot}$  enhancement around -15 C is likely exaggerated
- Direct implications on studies relying on • radars and/or lidars without consideration of extreme ice habits (e.g., via mass-dimensional relationships)



**Observed** 

**Falling slower** 

Larger surface area

Ameliorate with weaker shear and turbulent broadening terms



7



- Total cloud base ice number concentration ( $N_{itot}$ ) enhancements around -15 and -5 C could be the result of SIP
- N<sub>itot</sub> values around these temperatures are likely overestimated (potentially significant implications on SIP event occurrence and intensity suggested by studies relying only on active remote sensing measurements)
- A Gamma distribution shape parameter  $\mu$  value of 4 is suggested as a suitable value for mono-modal ice PSD fits; for example, in ice microphysics schemes
- Arctic cloud base precipitation rates average at ~0.06 mm  $h^{-1}$  and generally increases with cloud depth
- **Future direction:** this retrieval will be applied to sub-cloud profiles at multiple ARM sites to produce an ARM dataset that will be made available to the community

#### Published manuscript:

Silber, I., Arctic Cloud-Base Ice Precipitation Properties Retrieved Using Bayesian Inference, J. Geophys. Res.: Atmos., 10.1029/2022JD038202.

#### Acknowledgments:

This study was supported by the DOE ASR grant DE-SC0021004





**Observed** 



- What if the implemented habits used here do not have sufficiently extreme aspect ratios?
- Equivalent reflectivity Z<sub>e</sub>
- $\propto \Sigma(volume^2)$
- Lidar extinction
  and backscatter
- Mean Doppler velocity
- Spectral width

 $\propto$  total projected area

(terminal velocity + air motion)

(Microphysical + beamwidth + turbulent + shear)

Falling slower

Larger surface area

#### Used in model



#### Falling faster

#### **Smaller surface area**



total projected area

**Observed** 



**Falling slower** 





Larger surface area



Mean Doppler (terminal velocity + air motion) velocity (Microphysical + beamwidth +

What if the implemented habits used here do not

**Σ(volume<sup>2</sup>)** 

turbulent + shear)

have sufficiently extreme aspect ratios?

 $\infty$ 

x

**Spectral width** •

Equivalent

reflectivity Z<sub>e</sub>

Lidar extinction

and backscatter

•

•





- What if the implemented habits used here do not have sufficiently extreme aspect ratios?
- $N_{itot}$  enhancement around -15 C is likely exaggerated
- Direct implications on studies relying on radars • and/or lidars without consideration of extreme ice habits (e.g., via mass-dimensional relationships)





