Seasonal Variability within Quantitative Precipitation Estimates for the Surface Atmosphere Integrated Field Laboratory (SAIL) Field Experiment

JOE O'BRIEN1, MAX GROVER1, ROBERT JACKSON1, BHUPENDRA RAUT1,2, SCOTT COLLIS1, ADAM THEISEN1, ZACH SHERMAN1, MATT TUFTEDAL1, DAN FELDMAN3, V CHANDRASEKAR4

1Argonne National Laboratory, Lemont, IL
2Northwestern-Argonne Institute of Science and Engineering, Northwestern University, Evanston, IL
3Lawrence Berkeley National Laboratory, Berkeley, CA
4Colorado State University, Fort Collins, CO

2023 ARM/ASR Joint Facility PI Meeting, Bethesda, MD
OUR ROLE IN SAIL

• **Creation of Value Added Products (VAP) for Quantitative Precipitation Estimates (QPE)**
 - CMAC:
 - Corrective Moments to Antenna Coordinates
 - SQUIRE:
 - Surface Quantitative Precipitation Estimate
 - RadCLss
 - Extracted Radar Columns and In-situ Sensors

• **Creation of Open-Source Material for collaborative research**
 - Py-ART
 - ACT
 - Jupyter Notebooks

▶ *guccamweathermainS2 GIF: provided by Dan Feldman*
At its core is the identification of primary scatterers within a radar gate (i.e. gate ID)

- Fuzzy Logic method based on polarimetric radar variables
- Used to create tags for each gate that are used in downstream processing

To estimate precipitation:

- Empirical relationships of the equivalent radar reflectivity factor (Z_e) to liquid-equivalent snowfall rates ($Z_e = aS^b$) are typically applied
CMAC radar product that is gridded to a cartesian grid
- Transformation of native radar antenna coordinates to cartesian coordinates
- Extraction of the lowest valid gate available for each grid cell

- 250 m grid spacing (horizontal and vertical),
- spatial domain of 20 km (x) x 20 km (y) x 5 km (z), all in units of distance from the radar.

- Jan – March 2022, Dec 2022 – March 2023 now available
To allow for direct comparison between radar estimated precipitation and observed precipitation at locations of interest.

Utilizing Py-ART and ACT:
- In-situ sensors are collocated with the extracted radar column above the sites

Winter 2022 Data Available In Coming Weeks
FY24 goal:
- CMAC processing of rest of the campaign

For rainfall,
- comparison of multiple methods for calculating differential phase PhiDP and its range derive KDP were conducted for 25 August 2022
- KDP processing inspired by Giangrande et al. (2013) Linear Programming (LP) method found to be the most robust for conditions observed during SAIL.

Fig: Radar reflectivity (a) and KDP LP (b) are plotted along the radar beam through a convective core (c) with KDP and PhiDP (d) on 25 August 2022, 19:46 UTC.
AMS 2023 ANNUAL MEETING
Open Science in the Rockies

• **All-Day Open Science Workshop**
 • 20 attendees including undergraduate and graduate students
 • Initial analysis of the SAIL dataset
 • Collaboration between ARM field campaign scientists, data translators and developers.

• **ARM Jupyter Hub**
 • Atmospheric Community Toolkit (ACT)
 • Python ARM Radar Toolkit (Py-ART)
 • https://github.com/ARM-Development/open-science-rockies-2022