Development of a

Time-Gated Lidar

to Observe Atmospheric Clouds at Submeter Resolution

@BrookhavenLab

This project is funded by BNL PD and LDRD

Fan Yang

Brookhaven National Laboratory

This study is done with the collaboration of Yong Meng Sua (SIT), Alexandros Louridas (Raymetrics), Katia Lamer (BNL), Zeen Zhu (BNL), Edward Luke (BNL), Yu-Ping Huang (SIT), Pavlos Kollias (SBU/BNL), Andrew M Vogelmann (BNL), Allison McComiskey (BNL)

Results are detailed in Yang et al., *Remote Sensing*, 2023

f (0)

What does the cloud base boundary look like?

- Curiosity
- Cloud-air interactions
- Droplet formation

Time-gated Time-correlated Single Photon Counting Lidar (T2 lidar)

Wavelength	532 nm
Repetition Rate	20.6 kHz
Pulse Width	650 ps
Pulse Energy	3.4 µJ
Range Resolution	> 10 cm
Time Gating Window	5.5 ~ 85 ns

Time-gating technique

When running in the time-gated mode, the T2 lidar only receives backscattered photons in a small time-gated window (up to ~ 12 m).

Yang et al., 2023

Time-correlated single photon counting technique

- In each time-gated window, the arriving time of each photon is recorded at a resolution of ~50 ps.
- The lidar range resolution is limited by the pulse width (~650 ps), corresponding to ~10 cm range resolution.

Yang et al., 2023

Conclusion and future work

- The T2 lidar can resolve cloud base structure at submeter scales.
- We are developing theoretical and modeling approaches to link the T2 lidar observations with cloud microphysical properties and processes.
- More observations are needed.

This project is funded by BNL PD and LDRD.

Reference:

Yang, Fan, Yong Meng Sua, Alexandros Louridas, Katia Lamer, Zeen Zhu, Edward Luke, Yu-Ping Huang, Pavlos Kollias, Andrew M. Vogelmann, and Allison McComiskey. "A Time-Gated, Time-Correlated Single-Photon-Counting Lidar to Observe Atmospheric Clouds at Submeter Resolution." Remote Sensing 15, no. 6 (2023): 1500.