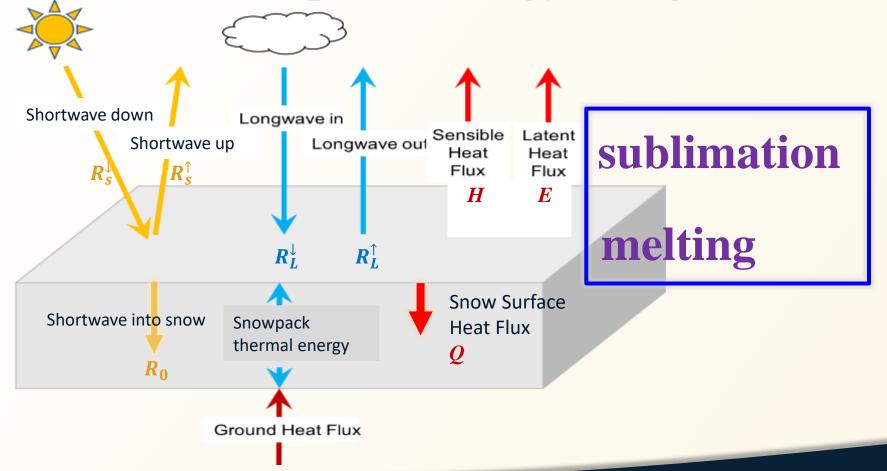
Understanding and Modeling Energy Budgets of Snowpack Using Observations of SAIL/SPLASH/SOS

Jingfeng Wang

Georgia Institute of Technology


DOE ASR/ARM PI Meeting August 09, 2023 **Environmental Engineering** College of Engineering

School of Civil and

Georgia

Tech

Snowpack Energy Budget

Bulk-Flux Model (gradient based)

$$E = \rho \lambda C_E U \left(q_s - q_a \right)$$
$$H = \rho c_p C_H U \left(T_s - T_a \right)$$

 $T_s - T_a$: bulk temperature gradient $q_s - q_a$: bulk humidity gradient $C_H = C_E$: transfer coefficients (stability, surface roughness)U: wind speed

Challenges in Modeling Sublimation

- Parameterization of stable boundary layer turbulence
- Uncertainty of snow surface roughness and temperature/humidity gradient

Maximum Entropy Production (MEP) Model

Closing energy balance and constrained by radiation fluxes

 Independent of roughness, wind speed and temperature /humidity gradient

Science Questions about Sublimation and Melting Process

• Do melting and sublimation occur simultaneously?

• Does melting occur at snow surface or within snowpack?

School of Civil and

[°]College of Engineering

<u>Georgia</u>

Tech

Summary

SAIL/SPLASH/SOS Field Observations

Validating sublimation model

Understanding sublimation, surface/volume melting and snowpack energy budget

https://www.arm.gov/news/blog/post/

Photos are courtesy of SAIL technician Travis Guy.