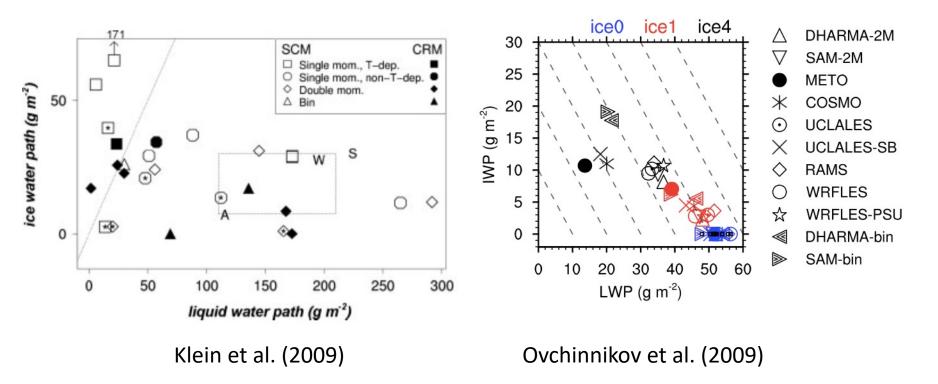

An Introduction to COMBLE-MIP


Ann Fridlind / NASA Goddard Institute for Space Studies

Fridlind and Ackerman [Ch. 7 in Mixed-Phase Clouds: Observations and Modeling, Ed. C. Andronache, 2018]

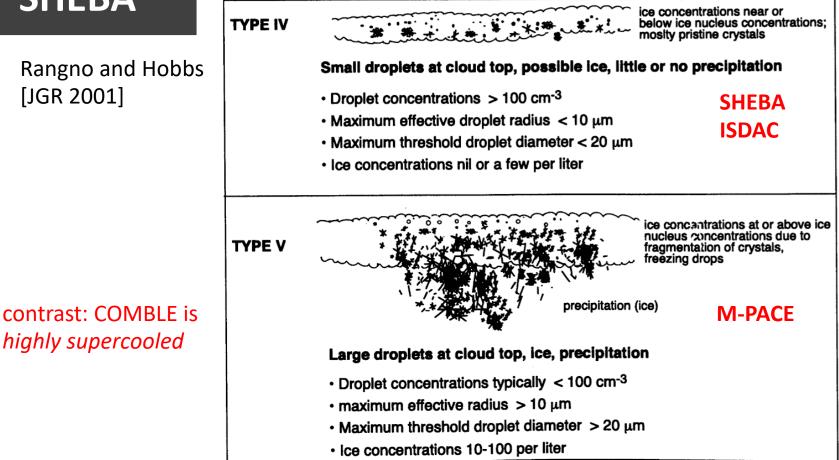
2023 ARM/ASR Joint User Facility and PI Meeting • 7 August 2023 • ann.fridlind@nasa.gov

Problem solved if N_i and habit are given (in LES)

2023 ARM/ASR Joint User Facility and PI Meeting • 7 August 2023 • ann.fridlind@nasa.gov

Case study set-up specifications	M-PACE	SHEBA	ISDAC	COMBLE	CONSTRAIN
nudged horizontal wind profile	Y	Y	Y	geostrophic	geostrophic
subsidence profile	Y	Y	Y	—	Y
sensible and latent heat fluxes	Y	Y	Y		
hygroscopic aerosol size distribution	Y	Y	Y	Y	fixed Nd
ice nucleating aerosol (somehow)	Y			Y	—
in-cloud ice number concentration		Y	Y		
ice properties (shape, capacitance, fall speed)			Y		
nudged temperature and water vapor			Y		
parameterized longwave radiative cooling			Y	—	
collision-coalescence turned off			Y		
set-up for SCM and LES	Y			Y	
quasi-Lagrangian following PBL trajectory				Y	Y

CONSTRAIN: de Roode et al. [JAMES 2019] following Field et al. [2014] cold-air outbreak case


2023 ARM/ASR Joint User Facility and PI Meeting • 7 August 2023 • ann.fridlind@nasa.gov

NASA

SHEBA

Rangno and Hobbs [JGR 2001]

(b) Moderately Supercooled Stratiform Clouds (Tops –10° to –20°C)

2023 ARM/ASR Joint User Facility and PI Meeting • 7 August 2023 • ann.fridlind@nasa.gov

LES/SCM case studies

- pros
 - SCM is powerful basic test of ESM column physics (e.g., Neggers 2015)
 - convenient framework for model development (at least column physics)
 - can be used to tune model parameters (e.g., Williamson et al. 2013)
 - observation-derived cases highlight fundamental knowledge gaps (e.g., ice multiplication, mesoscale structure, CCN and INP budgets)
- challenges
 - how to choose? (statistically representative? extremes? ensemble?)
 - don't let the perfect be the enemy of the good?
 - confer about data quality and previous work, then take a vote
 - are SCM-based improvements borne out in free-running ESM?
 - must be paired with additional evaluation (e.g., light precipitation frequency during MICRE by Stanford et al. 2023)

Group activities on the GCSS/GASS model

• pros

done or in progress

- reduced duplication of effort in setting up cases
- valuable consensus-building & knowledge-sharing re cases & setup
- can motivate and efficiently use dedicated efforts from observationalists
- cons
 - major effort from a lead organizer who is not specifically funded
 - overhead on every group to report specified results & file formats
- possible changes
 - introduce community code base (e.g., Python to convert outputs to unified format, apply forward simulators, plot results from models vs obs)
 - use DEPHY input/output community standards for LES/SCM specifications and output (<u>https://www.lmd.jussieu.fr/~hourdin/Workshop1Dstd.html</u>)
 - introduce use of ARM computing resources (ARM Workbench and Cumulus cluster)
 - emphasize a bare minimum package of runs & diagnostics (low-overhead option)
 - decrease emphasis on omnibus manuscripts?

Motivation for cold-sector mixed-phase cases

- scientific approach
 - objective not to converge LES models, but estimate impacts of specific process uncertainties
 - include processes most relevant to understanding climate model diversity
 - relevance extends to high-resolution global modeling (e.g., Sullivan and Voigt, 2021)
- science questions (Susannah Burrows, Xiaohong Liu, Johannes Mülmenstädt)
 - how accurately do aerosol need to be predicted for purposes of accurate cloud properties?
 - how INP-limited is the precipitation process, and how important is SIP?
 - how susceptible is rain occurrence to strong CCN seasonal cycles?
 - how important is spatial heterogeneity of aerosol on various scales?
 - would there be less precipitation in a warmer atmosphere?
- looking ahead
 - we don't have observations of the future, but SCM "fingerprint" may be valuable indicator of ESM diversity
 - LES sensitivity compared to SCM sensitivity an indicator of leading physics responsible (Sherwood et al. 2020)
 - could seek to use observations creatively in emergent constraints-ish approach?
 - pilot study contrasting DOE COMBLE and NASA ACTIVATE small ensembles was workshopped at the CFMIP/GASS meeting in Paris last month (contacts: Greg Cesana and Florian Tornow)

Today's agenda

- aerosol specification Abbey Williams/UCSD
- aerosol-INP closure Daniel Knopf/Stony Brook
- observational constraints Florian Tornow/CU–NASA GISS
- COMBLE-MIP at the ARM Workbench Max Grover/ANL
- preliminary results Tim Juliano/NCAR
- discussion