

Observational Constraints for Marine Cold—Air Outbreaks during COMBLE

Florian Tornow (Columbia University and NASA GISS) and others

Presented during Breakout: "The COMBLE LES/SCM Model-Observa on Intercomparison Project: First Results and Integra on with the ARM Data Workbench", ARM/ASR PI Meeting 2023, Rockville, MD

c/o NASA Worldview

Observational Constraints - Satellite-based LWP

- based on low-frequency microwave radiometers that are blind to ice
 - about a dozen sensors on earth-orbiting platforms
 - MAC-LWP (Elsaesser et al., 2017) retrieval of total liquid water path (LWP), that is cloud plus rainwater paths largely independent of solar and viewing geometry
 - footprints of roughly (25 km)² collected over (100 km)² domains

MAC-LWP along a Lagrangian

Example of MAC-LWP along a Lagrangian trajectory in Northwest Atlantic

AVHRR

IMERG

Instrumen

MAC-LWP

X MODIS

Observational Constraints - Imager-based Retrievals (1/2)

- based on multi-spectral imagers
 - several platforms carrying MODIS, VIIRS, and AVHRR, ~1 km pixel size
 - retrieval of cloud optical depth (COD), cloud-top effective radius (CER), cloud-top temperature (translated into altitude with auxiliary info)
 - derivation of additional products collected over (100 km)² domains
 - $\circ~$ cloud cover as the number of pixels with COD above threshold
 - cloud droplet number concentration assuming certain subadiabaticity of liquid condensate
 - for discussion:
 - which other retrievals are reliable in mixed-phase conditions?
 - o is the use of satellite forward simulator useful?
- VIIRS-based retrievals along a Lagrangian trajectory on 13 March 2020, including ± 1 hours window

Comparing LES against Satellite Observations c) N-6

10

AVHBB

IMERG

Instrumer

Time (h)

15 20

×

MAC-LWF

Observational Constraints - Imager-based Retrievals (2/2)

- extracting cloud morphological information over (~100 km)² domain
 - application of simple watershed algorithm (Tornow et al, in prep.)
 - on brightest subset of cloud, iterate from brightest to dimmest pixel
 - $\circ~$ using radiance or COD threshold to merge clusters
 - cell size, number, orientation (where elongated)
 - for discussion:
 - o other metrics that should be extracted?

Median cluster size with downwind distance, extracted from a suite of COMBLE cases

Reflectance

Clustering applied to snippet of VIIRS visible imagery

Observational Constraints - Satellite-based IWP

- based on microwave radiometers of greater frequency sensitive to frozen hydrometeors
 - several platforms on low-Earth-orbiting platforms
 - retrieval of ice water path (courtesy Jie Gong, NASA Goddard)
 - for discussion:
 - other products that should be considered?
 - use of satellite forward simulator useful?

Example of IWP (right) along a Lagrangian trajectory on 13 March

MIZ near Svalbard

Observational Constraints - CALIPSO vs. LES (Israel Silber, in prep.)

•use EMC² (Silber et al. GMD 2022) to evaluate LES vs CALIPSO satellite

•LES clouds too deep + dense

Observational Constraints - CALIPSO vs. LES (Israel Silber, in prep.)

• use EMC² (Silber et al. GMD 2022) to evaluate LES vs ground-based radar + lidar

