Model-Observation Integration: Approaches, Challenges, and Opportunities

Deep Convection & Radar

"Simulating isolated storms observed during TRACER using NU-WRF EPIC, a high-resolution weather model with polarimetric radar forward-simulation and prognostic electrification"

Toshi & Marcus

Forecasting microphysics, convection, lightning and polarimetric radar during TRACER IOP

3000

F001 2022-08-07 01:00:00 Sun UTC (2022-08-06 20:00:00 Sat CDT)

1km NUWRF-EPIC forecasting

PBL Height (m) + 10-m Wind (m s^{-1})

2022-08-07 01:02:57 Sun UTC (2022-08-06 20:02:57 Sat CDT)

Inline POLARRIS + Forecast Validation

0.5 Deg. Differential Reflectivit

0.5 Deg. OCed Reflectivit

NUWRF-EPIC 1km simulations from June 1 to Sep 30, 2022. https://portal.nccs.nasa.gov/datashare/tracer/

TOBAC Cell-Tracked Objective Cloud Types

W2R-0-29T05:20:00

POLARRIS

KHGX

Inline POLARRIS suppress overestimated cell features and numbers from WRF radar composite (direct output).

Contributed From Kelcy Brunner & Eric Bruning

40

Finding Golden Cases

NUWRF-EPIC skill scores and isolated deep convective cells (IDC) counts are correlated each other. (Higher skills \rightarrow More isolated deep convections)

Observation-Model Integration

Keys of observation-model integration

- 1. Same statistics analysis should be conducted between observations and process models.
- 2. Simulators play roles to convert model-derived parameters close to observations.
- 3. Tight collaboration between observation and modeling scientists is CRITICAL.

1st Golden Case -8/7 case-

How best to sample with radars?

• Desirables:

- Fast scanning to capture microphysics of (sub 1-minute) thermal evolution
- Volumetric information --- 2D scans can miss important aspects of 3D thermals

Realistic constraints:

- Probably don't have, e.g. Phased Array Radars, so scanning rate is limited, so we must limit scan domain and actively target cells.
- Spinning dish radars don't like doing limited-sector PPIs, so might need to stick to RHIs
- What is a "target"? How do we prevent preferentially sampling "interesting" but unrepresentative population of convective storms?

One past approach: 2018 X-SAPR experiment

 X-SAPRs were run in limited angle (roughly 90 degree) PPIs, targeting a "sweet spot" for mixedphase processes every 120 sec

TRACER C-SAPR2 scan strategy

- Use satellite and radar information to identify target cells
- Perform 3 PPIs, 1-6 RHIs (see chart from Mariko Oue ->)
- Are cells sampled for full lifecycle?
- Do the RHIs represent most *meaningful* slices through 3D thermal volume?
 - What does this even mean??

Time period	PPI	RHI	
06/01/22 - 06/15/22		RHI1: cell centroid	
06/16/22 - 08/01/22		RHI ₁ : cell centroid RHI ₂ : cell max VIL	RHI₃: cell max Z RHI₄: cell max Z _{DR}
08/02/22 - 09/08/22	PPI ₁ : cell top PPI ₂ : cell middle PPI ₃ : 3° elevation	RHI ₁ : cell centroid RHI ₂ : cell max VIL RHI ₃ : cell max Z	RHI₄: cell max Z _{DR} RHI₅: cell max Z RHI₀: cell max Z _{DR}
09/09/22 – 09/30/22		RHI ₁ : cell centroid RHI ₂ : cell max VIL RHI ₃ : cell max Z	$\begin{array}{l} RHI_4: cell \max \frac{\Delta^* \ \#}{\Delta\$} \\ RHI_5: cell \max Z \\ RHI_6: cell \max \frac{\Delta^* \ \#}{\Delta\$} \end{array}$

Some conclusions (or lack thereof...)

- It's clear we want high spatial and temporal resolution 4D observations to compare to model thermals
 - This ideal should motivate whatever approach is taken

- It is *not* clear how best to approximate this ideal given the limitations of currently available
 - There is a temporal lag between when measurements are taken and when scientists start complaining about them