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Near the surface, in classic ABL theory it is commonly hypothesised

* Stationarity,
* Horizontal homogeneity,

* No subsidence,

== Simplification of the mean equations

Kansas 1969 Experiments




Embedded in these, it is also assumed that:

* Turbulence 1s locally generated,

®* The vertical diretion (Z) 1s the only important one,

* The energy containing eddies scale with distance from the world.




Summary of the classical MOST scaling relations
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z/L Kaimal & Finnigan 1994.

These relations are embedded in ESMs of all resolutions 1n
one way or another!




But what happens in the case of ASL flows over Perturbed Surfaces

where other length scales (besides “Z”) might also matter ?
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Land Surface Heterogeneity is omnipresent!

Bou-Zeid et al. 2020, Boundary-
Layer Meteorology




Even in the most

(Margairaz et al.,

2021,
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Example Effects of this heterogeneity:

(a) Effect of Secondary Circulations

py

Mauder et al., BLM, 2020.




Therefore, in most of these “perturbed” surface cases:

1. n11 assumptions embedded in MOST are violated, and this breaks

down. Alternatives are needed for models and experiments!

2. Non-local advective transport processes are generated and must

be accounted. These are currently neglected.




To help overcoming these issues we are investigating 2 approaches:

1. Proposed Turbulence Anisotropy as an additional non-dimensional
term that enables generalizing MOST:
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Data from the CABAUW, CASES-99, AHATS, METCRAX, 1BOX, T-Rex, MATERHORN projects.

===l Needs to investigate the effect of numerical resolution and filtering.



2 . Definition of a Heterogeneity parameter that facilitates
parametrizing the effect of Advection:
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To test these and other new concepts we need “Next Gen”
field experiments!

®* Field experiments that go beyond single point measurements, and look

more like LES Control Volumes,..

®* Field experiments that allow us to compute the differential equations

for Mass, Heat, and Momentum

* Field experiments that we can use to test hypotheses/concepts
developed first through “idealized” LES studies and then TESTED in

real conditions

* F'ield experiments that are not only designed to try to test/validate

numerical simulations.




To test these and other new concepts we need “Next Gen”
field experiments!

* For Example:

O(LES)




To test these and other new concepts we need “Next Gen”
field experiments!

® For Example: = s e e e - Y
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To i1llustrate that this is not such a CRAZY idea,..

We developed the Idealized Planar array study for Quanitfying Surface
heterogeneity (IPAQS),
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IPAQS 2018/2019
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Example results: Closure of the surface energy budget (SEB)
during fair weather days.
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The shading indicates
the residual:

Residual < 5%
5% < Residual < 15%
- Residual > 15%
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* Relevance of Advective
transport!
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Conclusions:

* We look forward to AMF3!
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®* Yet, 1t would be great i1f opportunities were provided to
enhance 1ts capabilities through IOPs:

* to capture the “Ecosystem Scale Fluxes”

* understand the effect of canopy heterogeneity

* further study turbulence anisotropy as a potential
path to generalize MOST also over vegetated canopies.
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