Roger Marchand: Investigator of Low Clouds

Published: 27 January 2020
University of Washington atmospheric scientist Roger Marchand. Photo is courtesy of Roger Marchand.

In both the northern and southern hemispheres, one observationalist aims to improve the way clouds are represented in models

Roger Marchand, a research professor of atmospheric sciences at the University of Washington, is a student of the low clouds that blanket the world’s oceans and play a critical role in the Earth’s radiative balance.

He is among many scientists supported by the U.S. Department of Energy (DOE) for work on improving how clouds are represented in models.

For one, Marchand is a longtime veteran of projects funded by the Atmospheric System Research (ASR) program at the DOE, where the primary mission is getting the processes behind earth system models right, and where addressing uncertainties in models drives much of the research.

He has studied the three-dimensional (3D) structure of low clouds, trying to develop better approaches to determining the properties of clouds from radar.

Marchand is also studying the impact of spatial correlation in cloud and precipitation properties as factors that are not adequately captured in climate models. This results in low clouds being represented in models as raining more often, but more lightly, than they actually do.

Over the last several years, Marchand has been keenly focused on the properties of low clouds over the Southern Ocean.

Sometimes, such research includes a spot of adventure.

‘I Buzzed the Pilot’

In Hobart, Australia, in 2018, Roger Marchand (wearing hat) explains aircraft instrumentation to graduate students from the University of Washington in Seattle and Monash University in Melbourne, Australia. Photo is courtesy of the University of Washington.

One day in February 2018, Marchand found himself strapped into a seat aboard a Gulfstream V research jet. Landfall was hundreds of miles away, in Hobart, Australia.

Just 500 meters (1640 feet) below was a patch of the Southern Ocean, a region of drizzling low clouds and white-tipped wild waves. It covers 15 percent of the Earth’s surface and is said to be the stormiest place of Earth.

“It was as bumpy as you would expect it to be,” says Marchand of the white-knuckle flight in search of cloud droplet sizes and other data on the properties of clouds and aerosols.

What he calls an optical illusion didn’t help matters: The waves below were so large they seemed very close to the aircraft. He says, “I buzzed the pilot: ‘Are you sure we’re 500 meters up?’ ”

At the time, Marchand and other scientists were in the midst of a series of international campaigns related to the Southern Ocean, a vast, relatively pristine body of water that circles icebound Antarctica like an epic moat.

Critically, it soaks up a lot of the planet’s atmospheric carbon and radiative heat and influences global oceanic circulation and climate.

Yet the Southern Ocean is influenced by atmospheric properties that are not well understood and not well represented in models―which reflect stubbornly large biases related to cloud cover and solar radiation.

“This is not just a curiosity,” says Marchand of the knowledge gaps, “but something we really need to address.”

Beyond Satellites

In early 2018, in Hobart, Australia, Marchand (right) poses with University of Washington graduate students Litai Kang (left) and Emily Tansey (center). Behind them is the research aircraft that gave Marchand a few bumpy and fruitful rides above the Southern Ocean. Photo is courtesy of the University of Washington.

Scientists studying the cloud and aerosol properties of the Southern Ocean have relied mostly on satellite data, which has had little validation from direct observations in the region.

Various international scientists designed a cluster of 2016-2018 experiments, in part, to collect validating and clarifying observations from instrumented platforms on land, at sea, and in the air.

“It is an under-observed area,” said Marchand of the reasoning behind the convergence of campaigns, “and recent scientific studies have increasingly pointed to errors and uncertainties over the Southern Ocean as a major problem. In short, the time was just right.”

He was lead scientist for one of these experiments, the Macquarie Island Cloud and Radiation Experiment (MICRE) from March 2016 to March 2018. MICRE deployed instruments at a small-island research station staffed year-round in the Southern Ocean by the Australian Antarctic Division and the Australian Bureau of Meteorology.

The MICRE field campaign was sponsored by the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) user facility, which―as it happens―Marchand first tapped for data in 1999, when he was barely out of graduate school. Since then, the Southern Ocean has increasingly gripped his attention.

“The problem is clouds,” he says, “which are much more reflective than the ocean surface” and which hold the key to correctly predicting the amount of sunlight being absorbed over a given region. “Climate models are struggling to predict low clouds correctly over the Southern Ocean.”

About 80 percent of low clouds occur over the world’s oceans, and the Southern Ocean is exceptionally cloudy. At the same time, such clouds are the biggest source of uncertainty in modeling cloud feedback and climate sensitivity.

More than MICRE

ARM instruments aboard an Australian supply ship during ARM’s Measurements of Aerosols, Radiation, and Clouds over the Southern Ocean (MARCUS) field campaign from October 2017 to April 2018.

Joining MICRE in that cluster of recent Southern Ocean experiments was Measurements of Aerosols, Radiation, and Clouds over the Southern Ocean (MARCUS), a 2017 to 2018 shipboard ARM campaign led by the University of Oklahoma’s Greg McFarquhar, who was then at the University of Illinois. (Marchand was a co-investigator.)

Another was the Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES), supported mainly by the National Science Foundation and bringing together investigators from U.S. and Australian universities and Australian meteorological agencies.

At one point, SOCRATES was intended to be the umbrella term for all the contemporaneous Southern Ocean campaigns. Its field-research phase was based in Hobart, Australia, for six weeks in 2018.

SOCRATES was also supported by the Colorado-based National Center for Atmospheric Research, which supplied the aircraft that gave Marchand his dizzyingly dramatic view of high Southern Ocean waves.

In June 2019, Marchand delivered the anchor presentation at a breakout session on MARCUS and MICRE during the ARM/ASR User and PI Meeting in Maryland.

In November 2019, representatives of all the campaigns gathered at the University of Tasmania in Hobart for the Southern Ocean Atmospheric Research (SOAR) workshop.

They exchanged early interpretations of data, delivered campaign presentations, and discussed quality-control progress on all the data sets.

“It was about what we saw, how to understand differences, and what’s going on,” says Marchand, who presented on MICRE.

Less than a month later, in December, McFarquhar led a session at the fall meeting of the American Geophysical Union meant to bring together researchers on matters of Southern Ocean aerosol, cloud, precipitation, and radiation studies. Marchand was a co-convener.

There will be a special issue of the Journal of Geophysical Research: Atmospheres devoted to Southern Ocean research. (Marchand, McFarquhar and others are writing an overview article for the Bulletin of the American Meteorological Society.)

Another special issue in the same theme, with a submission deadline of March 2020, will appear in the journal Atmosphere.

Validating Satellite Data

This Australian Antarctic Division research station was the site of ARM ground instrumentation during the Macquarie Island Cloud and Radiation Experiment (MICRE) field campaign, which Roger Marchand led from March 2016 to March 2018.

These days, Marchand is busy using observations to change the geophysical parameters that would improve models of the Southern Ocean.

For one, he knows that low-level clouds in the region drizzle heavily. But when is that drizzle liquid water and when it is ice? (Losing ice depletes clouds and reduces their reflectivity.)

Marchand is also investigating how satellite measurements are corroborated by surface observations made during MICRE―a prelude to putting these two sources of information together.

“We observe what’s there, then we have to use our understanding of the physics and dynamics to understand how the properties we observed came to be,” he says of the physical understanding that leads to improved models. “That part of the story is coming.”

It’s too early for many papers to be out, says Marchand. But the first ones being submitted now will describe the observed cloud and aerosol properties, how these properties compare with expectations, and how they contrast with observations from the Northern Hemisphere. Other papers on the way will point out what satellites are getting right (or wrong).

After that, he speculates, a second wave of papers will focus on dynamical comparisons and on understanding the physical processes that models need to represent better to correctly predict low clouds over the Southern Ocean.

Getting to Climate and Weather

Marchand was born in Fall River, Massachusetts, and raised in the Maryland and Virginia suburbs of Washington, D.C.

He was barely out of graduate school in the late 1990s when he acquired an interest in the microphysics and modeling of the Southern Ocean―which in the last 10 years, he says, has matured into “a focus of intense effort.”

Yet even in his last years of PhD studies in electrical engineering, Marchand’s career could easily have taken another turn.

For one, his dissertation at Virginia Polytechnic Institute and State University (B.S. 1990, M.S. 1993, PhD, 1997), with electromagnetic wave propagation investigator Gary S. Brown, was on statistically inferring the parameters of rough surfaces based on scattering data from electromagnetic waves.

Marchand was also heavily influenced by earlier mentors, Aicha Elshabini and Sedki Riad, who were specialists in microelectronics―a field ”pretty far from where I am now,” he says.

But it was Marchand’s studies in electromagnetic waves that got him interested in radar systems, radar wave propagation, and scattering. By the time his PhD was in hand, he says, “I realized one of the places I could have an impact was in climate and weather.”

Going East, Then West

Marchand is an outdoorsman and kayaker. Here he is on the Owyhee River in Oregon. Photo is courtesy of Marchand.

What followed was an offer from atmospheric scientist Thomas Ackerman to come to Pennsylvania State University, where Marchand was a research assistant from 1997 to 1999.

Ackerman soon moved to Pacific Northwest National Laboratory (PNNL) in Washington state to become chief scientist for ARM. Marchand followed him a year later as an atmospheric scientist, got acquainted with ARM data, and enjoyed life in small-town eastern Washington.

Today, Ackerman is at the University of Washington. Marchand followed him to Seattle shortly after his marriage in 2006 to Gina Massoni, who preferred big cities over little ones.

Initially, he was with Ackerman at the university’s Joint Institute for the Study of the Atmosphere and Ocean (2007 to 2011), and later in the Department of Atmospheric Sciences as a research professor (2012 to present).

“I like to say,” says Marchand, “that I’ve been following Tom (Ackerman) around for my whole life.”

Poetry on the Radar

The story of how Roger Marchand got to science would not be complete without telling how he got far away from science.

Marchand ripped through undergraduate program at Virginia Tech―one of those people who thrive on 20 credit hours a quarter. But he emerged thinking that something was missing.

“I said to myself: I feel kind of robbed,” recounts Marchand. “I had this incredible slate of technical courses, but missed out on the arts and humanities.”

So during graduate school―in between work on scattering models and other arcana of electrical engineering―Marchand took enough courses to earn a second bachelor’s degree (a B.A. ancient history, in 1996) and nearly a third in classical studies. (He fell six credits shy.)

Along the way, Marchand studied classical Latin for four years. (“It’s the best language for poetry,” he says.)

“When you’re doing it for fun, it is tremendous fun,” Marchand says of the language of ancient Rome and the verse of Ovid and Virgil. “There’s a lot to be said for being broadly educated.”

# # #

This work was supported by the U.S. Department of Energy’s Office of Science, through the Biological and Environmental Research program as part of the Atmospheric System Research program.